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Course introduction

These notes comes from the course “Electronics” taught by Prof. A. Spinelli at
Politecnico di Milano in the second semester of the academical year 2017-2018.
The goal of the course is to give the student some concepts about electronics
that are useful for an engineering physicist. In fact, electronics influences physics
just as physics is important for electronics. Further developing this concept, we
know that there is a branch of physics that deals with electron devices, that
are the basic elements of electronics. On the other hand, electronics develops
the so called enabling technologies that are fundamental for the development of
physics (e.g., Data Acquisition Systems). An example of this close relationship
between physics and electronics can be found in the number of Nobel prize in
physics that profoundly influenced also electronics (the discovery of the Giant
Magnetoresistance, the invention of the CCD, experiments about graphene and
the invention of blue LEDs). In particular, the most important electron device
developed is the transistor (1947), that set a revolution in electronics, leading
to the vast number of applications that we have nowadays. Analysing then the
development of this devices, we can observe that they tend to become smaller
and smaller every year, increasing the number of transistors that we can have
in a certain device and the frequency at which they can work. This leads to an
increase of the performances and a decrease of the scaling of these devices that
are described by the Moore Law and, as a side effect, bring to question: when
will we hit the scaling limit? This is actually a debated problem in science and
a few promising alternatives are present, even though they seem to be still far
from replacing the silicon-based technology.
However, electron devices are not the topic of this course; we will focus on the
enabling technologies. In fact, sensors, instrumentation and data acquisition are
important topics in every branch of science, not just in physics. The key feature
of these technologies are data acquisition systems and signal processing, there-
fore it is important for an engineer to be able to correctly size and design every
acquisition chain, dealing with these problems. The problem of signal condi-
tioning is that, in applications, we need to deal with signals that are non-linear,
high or low amplitude, noisy and analog and obtain from them linear signals,
attenuated or amplified, noise free and digital. To do this, we need to design an
interface circuitry, in which we have an amplification stage, a condition circuitry
(in which the noise is reduced) and, finally, an analog to digital converter.
The course will therefore consist of two topics:

• Operation Amplifier circuits, in which we will deal with feedback, impe-
dances, parameters, linear applications of OAs and their frequency re-
sponse, stability and compensation;

vii



viii COURSE INTRODUCTION

• signal recovery from noise, in which we will deal with sensors, noise, ran-
dom process and noise filtering techniques.

Dealing with Operation Amplifiers, the goal is to be able to analyse and design
simple circuits, with an emphasis on their applications to the problem of data
acquisition. Moreover, we will investigate the stability issue of these devices and
the real parameters that can make devices different from what we theoretically
designed. The sensors we will briefly introduce are thermocouples, thermistors
and strain gages, while when dealing with noise we will investigate mainly the
white noise and the 1/f noise.
At the end of this course, the student should be able to analyse and design sim-
ple circuits with operation amplifiers, understand simple problems regarding
data acquisition and involving sensors, preamplification and noise filtering and,
finally, he or she must be able to adopt an engineering approach to problems.
Lessons will be devoted to theory and basic concepts, while numerical example
and exercises will be investigate during drills sessions. The teacher is at stu-
dents’ disposal for appointments, that can be asked by sending an email. Lecture
slides, past exams’ solutions, drills, recommended books and extra material can
be found at home.deib.polimi.it/spinelli. A few prerequisites about linear
networks, Fourier and Laplace transforms and linear systems are needed. The
final examination is written and, by the end of the course, students will have
to decide if it will be a regular exam or an open-book exam. The regular exam
will consist in two exercises, each one made up by four questions and about the
two main topics ( OA and noise and filtering and signal conditioning), and a
theoretical question; it will be 3 hours long. The open-book exam will consist in
just two questions (as before) to be solved in 2 hours and 45 minutes. A 30/30
mark is equivalent to correctly solving (it means that also numerical results are
correct, not only the method used) 75% of the exam. Exams will be generally
scheduled at 13.00.
Finally, a few suggestions. The exam is about solving problems, not just describ-
ing how this can be done, and it is important to show your understanding of
the subject. Therefore, the hints are to pose a lot of questions to the instructor,
to first make sure to have understood theory before moving to exercises and
to remember that learning is a long and slow process. It is important to be
conscious of your own preparation, so that also the instructor can more easily
help you, and make sure to have understood the theory first, otherwise exercises
would be impossible.

home.deib.polimi.it/spinelli


Chapter 1

Operation amplifier

1.1 Equivalent circuits

Before starting, it is important to review some basic concepts that will be used in
the following part of the course; in particular, we will concentrate on equivalent
circuits.
The voltage equivalent circuit, also called Thévenin equivalent circuit, was first
formulated by H. von Helmholtz1 in 1853 and was then rediscovered in 1883
by L. C. Thévenin, that named it. On the other hand, the current equivalent
circuit, also called the Norton equivalent circuit, was independently discovered
in 1926 by H. F. Mayer and E. L. Norton. The fundamentals of electronics,
therefore, dates back to the 19th century.
The subject of these two theorems are linear networks, that are defined as
networks (in other words, circuits) that are made only by elements that can
be described using linear differential equations. In out applications, we will
deal with resistors R, inductors L and capacitors C, that in general will be
assumed constant, while source terms will be represented by voltage V sources
and current I sources, that will be assumed constant or linearly dependent on
quantities measured over other components (e.g. a voltage source controlled in
voltage will produce a voltage that will be proportional to the one measured
over, for example, a certain resistor). We can then say that every linear network
observed by any pair of terminals will behaves as if it were composed only by a
source element and an impedance. This leads to the following two theorems:

• Thévenin equivalent circuit: the circuit equivalent to any linear network
can be represented as a voltage source in series with an impedance;

• Norton equivalent circuit: the circuit equivalent to any linear network can
be represented as a current source in parallel to an impedance.

It is important to remember that the equivalence is only from the viewpoint
of the external load. The power dissipation in the network, having a quadratic
dependence on the elements of the network, will not be equal. Only the voltage-
current (V − I) characteristic of the network will be identical.

1This important physicist is also responsible for writing the first wave equation and dis-
covering the superposition principle.

1



2 CHAPTER 1. OPERATION AMPLIFIER

Figure 1.1: Equivalent circuits for the Thévenin and the Norton circuits.

The value of the voltage Veq applied by the voltage source in the Thévenin equiv-
alent circuit is the open-circuit voltage at the terminals of the linear network,
while the current Ieq imposed by the current generator in the Norton equivalent
circuit is the short-circuit current passing through the terminals of the linear
network2. On the other hand, the equivalent impedance in both circuits can be
found or as the ratio between the equivalent voltage and the equivalent current:

Zeq =
Veq
Ieq

or shutting down3 every source in the linear network and calculating the equiv-
alent impedance from scratch. Obviously, to exploit this second definition we
need to know the structure of the linear network; it is not possible to use a
black-box approach.
Equivalent circuits will then be fundamental for understanding amplifiers.

1.2 Voltage and current amplifiers and related
impedances

To start studying amplifiers, we can adopt a black box approach, not considering
what is inside an amplifier (thus thinking it as a black box) but studying its
equivalent circuit with respect to the input pins and the output pins. Depending
on the type of input (voltage or current) and on the type of output (again,
voltage or current), it is possible to identify four different types of amplifiers:

• voltage amplifiers: voltage as an input, voltage as an output;

• current amplifiers: current as an input, current as an output;

• transconductance amplifiers: voltage as an input, current as an output;

• transresistance amplifiers: current as an input, voltage as an output.

2This phrase states an important result that have to be stressed: to measure a voltage
between two pins, we need to open the circuit that connects them, while to measure a current
between two pins we need to short-circuit them.

3By shutting down every source, we mean that every voltage source is replaced by a short
circuit (∆V = 0) and every current source is replaced by an open circuit (I = 0).
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We will mainly study the first two of them, leaving the analysis of the second two
to the student. Both will be one-directional amplifiers, not allowing a reverse
transfer of the signal from the output to the input, and, in them, for the sake of
simplicity we will consider only resistors, even though the whole reasoning can
be made more general by considering complex impedances.

1.2.1 Voltage amplifier

Figure 1.2: Equivalent circuit of a voltage amplifier.

A voltage amplifier, by definition, takes a voltage Vi as an input and gives
a voltage Vo as an output. Due to this characteristic, we can consider what is
inside the amplifier using the Thévenin equivalent circuit of the amplifier. On the
input side, since we do not want any reverse transfer of signal, the voltage source
of the equivalent circuit will be identically equal to zero (thus being a short-
circuit), while the input impedance can be considered as an input resistance
Ri. On the output side, we will have a generic output resistance Ro and, since
we want the output voltage Vo to depend linearly4 on the input voltage Vi, we
will need a voltage-controlled voltage source (VCVS) that imposes a voltage
difference equal to AV Vi, where AV is a certain, constant gain.

Figure 1.3: Voltage amplifier connected to a source and a load.

To study this amplifier, we can add a source (in particular, its equivalent
circuit using Thévenin’s theorem) and a load resistance. The source is made up
by a voltage generator VS and a series resistance RS , while the load is repre-
sented by a resistance RL. From the partition of the voltage, we can calculate
the input voltage across the input resistance Ri:

Vi = VS
Ri

Ri +RS
4We are dealing with equivalent circuits and the superposition principle must hold.
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and again, considering the voltage-controlled voltage source to impose a voltage
equal to AV Vi, we can calculate the partition of the voltage on the load and on
the output resistances, obtaining the following output voltage:

Vo = AV Vi
RL

Ro +RL
.

We can define the total gain of the voltage amplifier as the ratio between the
output voltage and the voltage imposed by the source:

Vo
VS

= AV
Ri

Ri +RS
· RL
Ro +RL

.

The first observation that we can make from this expression is that, since the
two ratios Ri/(Ri + RS) and RL/(Ro + RL) are always lower than one (since
resistance are always positive quantities), then the total gain must always be
lower than AV , that represents the maximum, theoretical value of the gain.
Moreover, we can immediately see that the gain depends both on the source
series resistance RS and on the oad resistance RL, thus not depending only on
the elements of the voltage amplifier but also on the type of source and load
connected. This is an important drawback, since a change at the input source
or at the output load will change the gain in an often uncontrolled way (since
the values of these resistances are not always easy to predict). To avoid it, we
can state the following requirement for having an ideal voltage amplifier:

• the input impedance must be very high, such that:

Ri →∞ ⇒ Ri
Ri +Rs

' 1;

• the output impedance must be very low, such that:

Ro ' 0 ⇒ RL
Ro +RL

' 1.

These are fundamental criteria in the design of a good voltage amplifier and
therefore, when dealing with an ideal voltage amplifier, we will replace the input
impedance with an open circuit and the output impedance with a short-circuit.

1.2.2 Current amplifier

A current amplifier, by definition, takes a current Ii as an input and gives a
current Io as an output. Due to this characteristic, we can consider what is
inside the amplifier using the Norton equivalent circuit of the amplifier. On the
input side, since we do not want any reverse transfer of signal, the current source
of the equivalent circuit will be identically equal to zero (thus being an open
circuit), while the input impedance can be considered as an input resistance Ri.
On the output side, we will have a generic output resistance Ro and, since we
want the output current Io to depend linearly on the input current Ii, we will
need a current-controlled current source (CCCS) that imposes a current equal
to AIIi, where AI is a certain, constant gain.

Again, it is possible to connect this amplifier to a source and a load that,
since we are dealing with currents, will be expressed using the Norton equivalent
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Figure 1.4: Equivalent circuit of a current amplifier.

Figure 1.5: Current amplifier connected to a source and a load.

circuits. Studying the left-hand side of this circuit, we can observe that the input
current, from a current partition, can be written as:

Ii = IS
RS

Ri +RS

and this current, amplified of a factor AI , will be imposed by the current-
controlled current source in the right-hand side. Therefore, we can calculate
the output current Io flowing through the load resistance by writing a current
partition:

Io = AIIi
Ro

Ro +RL
.

Plugging the previous two expressions one into the other, we can obtain the
expression of the total gain of the amplifier:

Io
IS

= AI
Ro

Ro +RL

RS
Ri +RS

.

Also in this case we can observe that since the ratios Ro/(Ro+RL) and RS/(Ri+
RS) are lower than one (since resistances are positive quantities), the total
gain is lower than its maximum theoretical value, that is AI , the gain of the
current-controlled current source. Moreover, the gain depends on RS and RL in
a significant way and, as discussed for the voltage amplifier, this is an important
drawback, making the gain of the amplifier be different depending on the source
and on the load connected to it. These comments, that are identical to one we
have made for the voltage amplifier, lead in this case to different design criteria:

• the input impedance must be very low, such that:

Ri ' 0 ⇒ RS
RS +Ri

' 1;
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Type Input Output Ri Ro
Voltage amp. V V ∞ 0
Current amp. I I 0 ∞
Transconductance amp. V I ∞ ∞
Transresistance amp. I V 0 0

Table 1.1: Summary of the main types of amplifier.

• the output impedance must be very high, such that:

Ro →∞ ⇒ Ro
Ro +RL

' 1.

In an ideal current amplifier, therefore, we will replace the input impedance with
a short-circuit (that will make the current IS imposed by the source generator
to be identical to the input current Ii) and the output impedance with an
open circuit (thus making the whole current coming from the current-controlled
current source to be the output current).

1.2.3 Summary

The detailed study of the transconductance amplifier and of the transresistance
amplifier and of their input and output impedances in ideal cases is left to
student. Doing it, it is important to remember that the source side will be
different from the load’s one, using a Thévenin equivalent circuit when dealing
with voltages and a Norton equivalent circuit when dealing with currents. In
these cases, since the gain is the ratio between the output signal and the input
signal, it will have a certain dimension, while in the cases of the current and the
voltage amplifiers it was non-dimensional. In the case of the transconductance
amplifier, since the input is represented by voltage and the output by a current,
it will have the dimension of a conductance (that is measured in Siemens, that
are the reciprocal of Ohms). On the other hand, in a transresistance amplifier
the input will be a current and the output a voltage, therefore the gain will have
the dimension of a resistance (measured in Ohms).
The mainly characteristics of an ideal amplifier are summarized in Table 1.1.

1.3 Negative feedback and application to ampli-
fier design

1.3.1 Historical introduction

After this brief introduction to amplifiers, we can go a little more into details
about their design criteria, studying negative feedback. From an historical point
of view, the problem whose solution was represented by negative feedback dates
back to the first fourth of the previous century, when the American telephone
lines built the first and the second transcontinental telephone lines, made up
by a certain number of channels and amplifiers. After this initial success, a
further increase in the number of channels was extremely challenging due to a
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problem with amplifiers. From our previous courses on electromagnetism and
waves, we know that an electromagnetic signal propagating through a medium
(in this case, wires) will be attenuated by a number of effects and this makes
necessary the regeneration of the signal along the line. This can be done using
amplifiers, that at that time, before the invention of the transistor, consisted
in vacuum-tubes with a certain gain. This gain, due to the design of these
elements, was extremely dependent on a number of parameters (plate voltage,
temperature, humidity, ambient conditions, ...), thus being unstable and not
really linear devices. These non-linearities created intermodulation distortion in
multi-channel systems, thus making difficult the improvement of this system.
As an example, we can consider a quadratic amplifier that receives as an input
a sinusoidal signal at frequency ω:

sin(ωt).

This non-linear amplifier will give as an output the square of the input, therefore:

sin2(ωt)

that will contain, among other terms, also the second harmonic of the signal,
that will oscillate at frequency 2ω. In real amplifiers, that have much more
complex non-linearities, this will lead to the presence of many more harmonics,
making every channel interact with others and leading to a cross-talk between
different communications.
This significant limitation was solved by H. S. Black with the idea of negative
feedback. His goal, in fact, was to improve the stability and the linearity of
the amplification chain. He realized that the output of a non-linear amplifier
will contain some information about the non linearity present in the gain of
the amplifier Gol (we will soon understand why it is called like this) and that
this information can be used to correct the input signal, compensating (up to a
certain degree) non-linearities.

1.3.2 Theoretical explanation

Figure 1.6: General schematics of a negative feedback system.

The general drawing of a negative feedback system is represented in Figure
1.6. In it, we can recognize a non-linear amplification stage whose gain is called
Gol, a feedback stage whose gain is called F and, in the left-hand side, a differ-
ence operator that subtracts, from the input signal, the signal coming through
the feedback. This difference operator is fundamental for the effectiveness of the
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negative feedback system.
The signal ε coming out from the difference operator is the error of the ampli-
fication. Calling Sin the input signal of the system and Sout the output signal,
we can immediately see that it will be the difference (due to the presence of the
difference operator) between the input signal and the output one multiplied by
the gain feedback stage:

ε = Sin − FSout.

However, the output signal will be the product of the gain of the non-linear
amplifier Gol times the error signal:

Sout = Golε

and substituting the previous expression in this last one, we can write the overall
gain G of the negative feedback system as the ratio between the output signal
and the input one:

G =
Sout
Sin

=
Gol

1 +GolF
.

We can now investigate this gain in two limiting cases, since the asymptotic
behaviour is easier to discuss and every other case will be between these two.
Considering the product at the denominator, we can first assume:

|GolF | � 1

and therefore the one will be the dominant term at the denominator:

G =
Gol

1 +GolF
' Gol

1
' Gol.

Therefore, in this case, we obtained the gain of the non-linear amplifier, that
we can also call open-loop gain (from which the name Gol: it is the gain that
we have if we cut the feedback loop), just if there was not any feedback (since
the loop is open).
The opposite assumption is to have a strong loop:

|GolF | � 1

thus obtaining:

G =
Gol

1 +GolF
' Gol
GolF

' 1

F
= Gid.

This gain is called the ideal gain and, as we can see, it is independent from
the open-loop gain, depending only on the feedback network. This is extremely
important: in fact, the F block is not an amplifier, therefore it will be more easy
to build an it will more linear and stable than the open-loop block Gol.

1.3.3 Loop gain

An important parameter of the feedback system is represented by the loop gain.
To calculate it, we need to impose the input signal equal to zero, to cut the loop
(in an arbitrary point, since the result is independent from the cutting point)
and to inject a test signal Stest inside the loop. In Figure 1.7 it is possible to
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Figure 1.7: Calculation of the loop gain.

observe an example of this procedure. Doing this, we can obtain the expression
of the gain of the loop:

Gloop = −GolF

that, therefore, is a measure of the strength of the feedback system. Since, from
what we have said before, a good feedback system will have:

|GolF | � 1

and, since both Gol and F are positive:

Gloop < 0

we need to have:
Gloop � −1 ⇒ |Gloop| � 1.

Moreover, the overall gain of the feedback system can now be written as:

G =
Gol

1−Gloop

from the definition of loop gain we have just given.
It is then possible to rewrite this gain as:

G =
Gol

1 +GolF
=

1
F

1 + 1
GolF

=
Gid

1− 1
Gloop

observing that the ideal gain Gid is the gain we would obtain if Gloop were
infinite. Moreover, the quantity 1/ |Gloop| is the error between the gain G and
the ideal gain Gid. For example, we can assume the following data:

Gol = 105, F = 10−2

from which we can immediately calculate the loop gain as:

Gloop = −GolF = −103.

The ideal gain will be:

Gid =
1

F
= 102

while the actual gain:

G =
Gol

1 +GolF
= 99.9.
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This gives a relative error between the two loops that is identical to the inverse
of the absolute value of the loop gain:

Gid −G
Gid

= 0.001 =
1

|Gloop|
.

This property can be demonstrated by writing the error signal:

ε = Sin − FSout = Sin − FGSin

therefore:
ε

Sin
= 1− FG =

Gid −G
Gid

=
1

1−Gloop
' 1

|Gloop|
where the last equality holds under the assumption of strong loop and where, on
the left-hand side, we can recognize the definition of relative error of the gain:

Gloop � 1 ⇒ Gid −G
Gid

' 1

|Gloop|
.

1.3.4 Sensitivity of the system

We can now investigate the sensitivity of the overall gain G to the two elements
that composes it.
Consider first the open-loop gain Gol. To understand its influence on G, we must
calculate:

dG

dGol
=

d

dGol

(
Gol

1 +GolF

)
=

1

(1 +GolF )
2 =

1

(1 +GolF )
2 ·

Gol
Gol

=

=
G

Gol
· 1

1−Gloop
.

This allows us to write the relative variation of the gain as:

dG

G
=
dGol
Gol

1

1−Gloop

where the second term in the right-hand side is much lower than one if the
system has a strong loop:

Gloop � 1 ⇒ 1

1−Gloop
� 1.

Again, we can start from the previous example:

Gol = 105, F = 10−2 ⇒ G = 99.9

and try to see what happens when we double the open-loop gain:

Gol = 2 · 105, F = 10−2 ⇒ G = 99.95

therefore, if the open-loop gain doubles, the relative variation of the gain is
much smaller:

∆Gol
Gol

= 2 ⇒ ∆G

G
=

0.05

99.9
� 2.
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The situation is different when we consider the sensitivity of the gain to a change
in the feedback network, that gives:

dG

dF
=

d

dF

(
Gol

1 +GolF

)
=

G2
ol

(1 +GolF )
2 = −G2

that gives a relative variation:

dG

G
= −G dF = −dF

F

FGol
1 +GolF

=
dF

F
· Gloop

1−Gloop
' −dF

F

where under the strong loop assumption the second term is similar to one:

Gloop � 1 ⇒ Gloop
1−Gloop

' −1.

Again, from the previous example:

Gol = 105, F = 10−2 ⇒ G = 99.9

while doubling the feedback gain:

Gol = 105, F = 2 · 10−2 ⇒ G = 49.98

we obtain a much more important variation.
Therefore, the gain is almost independent from the open-loop gain (for which the
only requirement is to be big enough to have a strong loop), while it significantly
depends on the feedback network, that must be stable.

Figure 1.8: Interpretation of the different sensitivity of G from Gol and F .

This result can also be obtained from a physical interpretation of the circuit.
Considering the upper part of Figure 1.8, we can observe that an increase in
the value of the open-loop gain Gol causes an increase in the output signal
Sout and, consequently, an increase in the feedback signal FSout. However, this
signal is the subtracted to the input signal, thus determining a decrease of the
error signal ε that, passing through the increased value of Gol compensates the
variation of the open-loop gain.
On the other hand, if we have an increase of F in the feedback loop, we will
increase also the feedback signal FSout and, consequently, decrease the error
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signal ε. This causes a decrease of the output signal that tends to compensate
the variation of the feedback signal FSout. However, the system now is not
compensating the variation of the output, as it was doing for a variation of the
open-loop gain. This is the difference between the open-loop gain sensitivity
(much lower) and the feedback sensitivity (quite high).
These considerations reflect on the design requirements for negative feedback
systems:

• the only requirement on the open-loop gain is that it is high enough to
cause the loop to be strong:

|Gol| � 1 ⇒ |Gloop| � 1

while it can also be unstable and non-linear, being made of active ele-
ments5 and amplifiers (since their fluctuations will be reduced by the loop
gain);

• on the other hand, the feedback gain F must be very stable to not vary
the gain and therefore it will be made by passive elements.

The difference in stability between active elements and passive elements is that
the first ones are usually made by semiconductors, whose carrier densities de-
pends on a lot of factors (in particular temperature), thus being much less
stable, while passive elements are usually made by metals, whose characteristics
are much more stable.

1.4 Elementary linear stages and impedances

1.4.1 The operation amplifier

Figure 1.9: Drawing of an operation amplifier.

The main element at our disposal to build feedback systems as we have seen
in the previous section is the so called operational amplifier (OA). Operational
amplifiers are integrated voltage differential amplifiers, that take as an input the

5In general, we define active elements those elements that are able to provide a gain.
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difference between two voltages (V + and V −) and give as an output a voltage
Vo that is equal to a certain gain A times the input difference:

Vo = A · (V + − V −).

In general, real operation amplifiers are quite close to ideal operation amplifiers,
that are characterized by the following input and output impedances and open-
loop gain:

Rin →∞, Ro → 0, A→∞.

Even though in the following discussion we will assume to have an ideal opera-
tional amplifier, in general real values are slightly different:

Rin ' 106 − 109 Ω, Ro ' 100 Ω, A ' 105 − 106.

Figure 1.10: Use of an operation amplifier in a negative feedback.

We need now to design a feedback network and to use the negative input
of the amplifier to subtract from a reference signal the feedback signal, imple-
menting in this way a lot of mathematical operations.

1.4.2 Non-inverting amplifier

Figure 1.11: Non-inverting amplifier.

The non-inverting configuration of an operation amplifier is shown in Figure
1.11. We can study it assuming to have an ideal operation amplifier and we
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will see that the main characteristic of this configuration is that it gives at the
output an amplified voltage equal to the input voltage difference with the same
sign. Moreover, we can immediately recognized the two resistors on the right as
part of the feedback block of the negative feedback network and we can observe
that this part must have a connection to the ground.
To determine the behaviour of this circuit, we need to start from the assumption
of ideal operation amplifier. Defining I− the current entering the inverting pin
of the operation amplifier, since the input impedance of this ideal element is
infinite we can write:

I− = 0

and from this we can say that the whole current passing through the resistor R1

will pass also through R2, thus allowing us to write the voltage at the negative
pin as, from the partition of the output voltage:

V − = Vo
R2

R1 +R2
.

However, since we are dealing with an ideal operation amplifier, the output
voltage will be proportional to the difference between the two input pins:

Vo = A
(
V + − V −

)
⇒ V + − V − = Vd =

V0

A
→ 0

where we have considered that the open-loop gain of an ideal amplifier must
tend to infinity. Therefore, the voltage at the negative imput must be identical
to the one at the positive one and thus to the input voltage:

V − = V + = Vi

therefore we are now able to relate input voltage and output voltage, obtaining
the following gain:

Gid =
Vo
Vi

=
R1 +R2

R2
.

From this derivation, we can make a few comments:

• the gain is always positive, since resistances are always positive, therefore
the sign of the output voltage is always equal to the sign of the input’s
one, from which the name of non-inverting amplifier;

• the gain can be rewritten as:

Gid = 1 +
R1

R2
> 1

that is always larger than one;

• the gain is exclusively related to the ratio between the two resistances R1

and R2 and not on their absolute value.

We can the investigate the input and the output impedances of this circuit.
To calculate the input impedance, we need to impose, for example, a voltage
source VS at the input pin and determine the input current IS through that
pin; the input impedance will be the ratio between these two quantities. Since
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Figure 1.12: Calculation of the input and output impedances in a non-inverting
amplifier.

the input impedance of an operation amplifier is infinite, we can immediately
see that:

IS = 0 ⇒ Zi =
VS
IS
→∞.

To determine the output impedance, we need to shut down every input signal,
connecting the input pin to the ground, and we need to impose a certain (in
this case, for example) current source IS at the output node, thus determining
the voltage at that node. Since we have:

V + = 0

and the gain of an ideal operation amplifier is infinite, also V − will be zero and
we will not have any current flowing through R1 and R2. This means that the
current IS will go inside the operation amplifier and, from the Norton equivalent
circuit of this side of the operation amplifier, the current will go inside this pin,
whose voltage (equal to VS) will be zero. Therefore, the output impedance:

Zout =
VS
IS

= 0.

These two calculations clearly show us that this circuit is equivalent to having
an ideal voltage amplifier; the only possible drawback is that it cannot change
the sign of the input voltage and, sometimes, it may be useful.

1.4.3 Voltage follower and buffer stage

At this point, we can ask ourselves: what can we do if we would like to have
an ideal gain equal to one? Since the gain of the non-inverting amplifier can be
written as:

Gid = 1 +
R1

R2

we can assume to have:

R1 ' 0, R2 →∞ ⇒ Gid ' 1.

In principle, we could have chosen a value for R1 different from zero, but since
if R2 is very big we cannot have any current passing neither through it nor
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Figure 1.13: Voltage follower.

through the inverting pin of the amplifier, therefore through R1, it is useless to
have this elements and we can replace it with a short-circuit.

Figure 1.14: On the left, a source is measured without using a buffer stage, while
on the right it is present.

This configuration is particularly useful as a buffer stage. Consider the circuit
on the left-hand side of Figure 1.14. It is composed by a voltage source VS and
a series resistance RS (thus being the Thévenin equivalent of a generic source
circuit) and on the load side it is composed just by a load resistance RL, for
example belonging to a certain instrument. We want to measure, over RL, the
voltage source VS . From the partition of the voltage:

Vo = VS
RL

RL +RS

and we can immediately see that the voltage measured across the load resistance
will be different from the voltage imposed by the source. In particular, it will be
significantly affected by the presence of the load resistance and this measurement
will change using different source with different series resistances RS . This is an
obvious drawback of this circuit, thus we need to find an alternative.
A possibility, represented in the right-hand side of Figure 1.14, is to use a voltage
follower as a buffer stage between the source and the load. Since the input
resistance of the voltage follower is very high (it tends to infinity), through the
source part of the circuit there will not be any current flowing and the voltage
at the positive pin of the operational amplifier V + will be identical to the one
imposed by the voltage source VS . However, this means that also the voltage
of the negative pin is identical to the voltage of the positive one, therefore, the
output voltage Vo across the load resistance will be identical to the voltage of
the source VS :

Vo = VS .

This means that the instrument that we are using for the measurement (namely,
the resistance RL) does not affect in any way the source and therefore the result
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of our measure; in fact, from the viewpoint of the output we have an output
resistance that tends to zero. The effect of this buffer stage, made up by a
voltage follower, is therefore to decouple the input from the output, removing
load effects.

1.4.4 Inverting amplifier

Figure 1.15: An inverting amplifier.

In many applications, however, it is useful to change the sign of the input
voltage. Therefore, to reach this goal, we need to apply the signal to the inverting
pin of the operation amplifier, thus obtaining an inverting amplifier.
The circuit of an inverting amplifier6 is represented in Figure 1.15. Again, since
we are dealing with an ideal operation amplifier, the voltage of the positive pin
will be identical to the voltage of the negative one. Since the positive pin is
directly grounded (V + = 0), the operational amplifier in this feedback system
will set:

V − = 0

and this node will be called the virtual ground, since it stays at the ground
potential even though it is not physically grounded. Applying a certain input
voltage Vi, therefore, we will have a certain current flowing through R1:

I =
Vi − V −

R1
=

Vi
R1

and since the input impedance of the operation amplifier is infinite, it must be
equal to the current flowing through the resistance R2. This allows us to write
the voltage drop across the resistance R2 and, since it is connected at the output
and at the virtual ground, the output must be:

Vo = −IR2 = −Vi
R2

R1

that gives the following ideal gain of the circuit:

Gid =
Vo
Vi

= −R2

R1
.

6When solving these kind of circuits, the starting point is always to identify whether is
V + that is set by V − or vice versa. Once we have done this, we have determined the value of
both nodes and we are able to solve the surrounding network.
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Figure 1.16: Input and output impedances of an inverting amplifier.

Again, we can now study the input and output impedances7 of this amplifier.
For the input resistance, we can set through a generator an input voltage Vi and,
from what we have said before, we will obtain the following input current and
thus input impedance:

Ii = I =
Vi
R1
⇒ Zi =

Vi
Ii

= R1.

We can immediately see that the input impedance is not infinite, as we had
for the non-inverting configuration: this means that if we are applying a signal
that has its own series resistance RS we will obtain a partition between RS and
R1, therefore the source will affect the overall gain of the circuit. However, we
can immediately solve this problem by posing a buffer stage between the series
resistance RS and the resistance R1: this will lead to increase the complexity of
the circuit, but also to increase its performances.
The output resistance, on the other hand, can be found imposing a current gen-
erator IS at the output. Since now the input voltage is grounded, the resistance
R1 will be between a virtual ground (V −) and the real ground, therefore we will
not have any current flowing neither through R1 nor through R2. The output
voltage will then be set at ground as well as the input nodes, thus leading to:

Vo = 0 ⇒ Zo =
Vo
IS

= 0

a zero output impedance, as in the ideal case.
From this configuration, it is possible to build circuits that realize some impor-
tant mathematical operations on signals.

Adder circuit

Starting from the design of the inverting amplifier, it is possible to build an
adder circuit as in Figure 1.17. It consists in an inverting amplifier in which we
have connected, to the inverting pin of the operation amplifier, different input
branches (each one with its own resistance) one in parallel with the other. The
easiest way to study this kind of circuit is exploiting the linearity property,
through the superposition principle.

As in Figure 1.18, we can assume to have an input V1 at the first input
node, while every other input node is grounded. Again, since we are dealing

7In general, we use a voltage generator at the input and a current generator at the output
when studying these impedances. This is a consequence of the fact that we already know the
result of this study and this choice will allow us to better understand limiting cases. In general,
however, it should be possible also to change this choice without changing the result.
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Figure 1.17: An adder circuit.

Figure 1.18: The superposition principle applied to an adder circuit.

with an ideal operation amplifier, we can set the negative input of the operation
amplifier at ground potential. From this, we can say that there will not be any
current flowing through the resistors R2, . . . , Rn, since they have both ends
connected to ground; the only current present will flow through R1 and it will
be equal to:

I =
V1

R1
.

This current, then, will necessarily pass through the resistor R and it will set
the potential of the output, that in case of all input equal to zero except for the
first one, will give:

Vo1 = − R

R1
V1.

Repeating an identical analysis for every other condition, in which we will have
Vj 6= 0 and every other input different from the j-th one set at zero, we will
obtain the following output:

Voj = − R

Rj
Vj

and, since by the superposition principle the overall output will be the sum of
the outputs in each one of these conditions:

Vo = − R

R1
V1 −

R

R2
V2 − · · · −

R

Rn
Vn

and assuming the resistances of every input to be each equal to the others:

R1 = R2 = · · · = Rn ⇒ Vo = − R

R1
(V1 + V2 + · · ·+ Vn) .

The first comment we can immediately make is that at the output we will obtain
the sum of the input potentials with its sign changed and, depending on the ratio
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between the resistances R/R1, amplified or reduced. Therefore, now the name
“operation amplifier” can be understood: this element allows us to implement
mathematical operations.
The input impedance of this circuit can be studied considering just one input
and grounding all the others: as in the case of the inverting amplifier, it will be
equal to the input resistance Rj (if Vj 6= 0). The output impedance, as in the
case of the inverting amplifier, is identically equal to zero.

Subtractor circuit

Figure 1.19: A subtractor circuit.

A different possibility is represented in Figure 1.19, where we can see a
subtractor circuit. As we can easily imagine, it will make the difference of the
signals applied at the two inputs. Moreover, we can observe that also in this
case, as in any other case we have seen so far, the feedback is connected to the
inverting pin of the operation amplifier, otherwise the system will be unstable.
Also in this case, we can investigate it using the superposition principle.

Figure 1.20: A subtractor circuit investigated using the superposition principle
(part 1).

The first possibility is to impose the second input equal to the ground poten-
tial V2 = 0. Since we are dealing with an ideal operation amplifier, there will not
be any current coming or entering the positive pin of the amplifier, therefore the
two resistances R3 and R4 will be in series and their ends will be both connected
to ground. This means that we will not have any current flowing through them
and the positive input of the amplifier will be set at ground potential. Since
we are dealing with a negative feedback system, then, the negative input of the
amplifier will be the virtual ground and we can then write the current flowing
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through the resistance R1 as:

I =
V1

R1
.

Since this current will flow also through R2, we will obtain the following output
voltage:

Vo1 = −R2

R1
V1

as if it were an ideal inverting amplifier.

Figure 1.21: A subtractor circuit investigated using the superposition principle
(part 2).

On the other hand, if we impose at ground the first input and we have a
voltage V2 at the second one, we can write the voltage of the positive pin of the
operation amplifier by writing a voltage partition:

V + = V2
R4

R3 +R4

but, since we are dealing with a negative feedback system, the positive pin will
be kept at the same voltage of the negative one by the circuit and this allows us
to write the current flowing through the resistors R1 and R2 and, consequently,
the voltage at the output:

V − = Vo2
R1

R1 +R2
= V2

R4

R3 +R4
⇒ Vo2 = V2

R4

R3 +R4
· R1 +R2

R1
.

It is possible also to note that this second circuit, with this configuration of
the inputs, can be rearranged as a non-inverting amplifier, thus explaining the
result we have just obtained.
Summing the results obtained by superposition principle:

Vo = Vo1 + Vo2 = −R2

R1
V1 +

R4

R3 +R4

R1 +R2

R1
V2 =

R2

R1

(
−V1 +

1 + R1

R2

1 + R3

R4

V2

)

and if we make the following choice of resistances:

R1

R2
=
R3

R4
⇒

1 + R1

R2

1 + R3

R4

= 1
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we obtain:

V0 =
R2

R1
(V2 − V1) .

Therefore, this circuit allows us to calculate the difference between the voltages
of the two inputs, increased or reduced by a factor R2/R1 dependent on the
ratio of the two resistance considered.

A few considerations

Before ending this section, it is important to make a few comments. First of all,
up to now we have only considered voltage amplifiers, but it is possible to create
these kind of operations also dealing with other kind of amplifiers. Moreover,
we have seen that often the closed-loop gain of the circuits depend on the ratio
between the resistors, not on their absolute value, thus allowing us to make a
choice. In particular, low-value resistors will give us a better frequency response,
but they will draw more current. On the other hand, high-value resistors are
more noisy and enhance leakage currents. In general, therefore, resistors adopted
are in the range 10− 100 kΩ.

1.4.5 Current-voltage converter

Figure 1.22: A current-voltage (I-V) converter.

Another useful linear circuit is the current-voltage (I-V) converter, repre-
sented in Figure 1.22. This kind of circuit takes as an input the current coming
from a source (that we have represented through its Norton equivalent circuit)
and gives as an output a voltage. Analysing this circuit, we can immediately
see that since the positive pin of the operation amplifier is grounded and the
system has a negative feedback, the negative pin of the operation amplifier will
be set at virtual ground. This means that there will not be any current passing
through the resistance of the source RS , since it will be connected on one side
to the ground and on the other side to the virtual ground. Therefore, the whole
current imposed by the generator Ii will pass through the feedback resistance
R, thus determining an output voltage that is equal to:

Vo = −RIi

converting the input current in an output voltage through a conversion fac-
tor represented by the input resistance. The gain, therefore, has obviously the
dimension of a resistance and we have built a transresistance amplifier. It is
important to note that the vast majority of the circuits that we have seen so
far relies on the inverting architecture, since it is the most flexible one.
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The input resistance of this circuit can be calculated observing that the gen-
erator will set a certain non-zero current Ii but that the voltage across the
generator VS is zero due to the presence of the virtual ground; this makes the
input impedance to be identically zero:

Zi = 0.

This is good result, that makes this circuit resemble the ideal one, since the
gain of the amplifier (or converter, depending on its usage) is independent from
the resistance of the source. From the analysis that we have carried out many
times, it is possible to observe that also the output impedance will be zero:

Zo = 0.

1.4.6 Voltage-current converter

Figure 1.23: A voltage-current (V-I) converter.

In Figure 1.23 it is represented a voltage-current (V-I) converter, also called
a transconductance amplifier. In this case, the input is represented by a certain
input voltage Vi, while the output is a current Io passing through a load re-
sistance RL. Again, since we are dealing with a negative feedback system, the
negative pin of the operation amplifier will be set by the system at the same
voltage of the positive pin, thus we have that the voltage drop across the re-
sistance R is the input voltage Vi. This will allow us to calculate the current
passing through R and, since we are dealing with an ideal operation amplifier,
it will be equal to the output current passing through the output resistance:

Io =
Vi
R
.

We can immediately see that in this case the gain has the dimension of a con-
ductance, as expected.
The calculation of the input impedance is quite straightforward: the input set a
voltage Vi but we cannot have any current flowing through the pin of the oper-
ation amplifier, therefore the input impedance must be equal to the impedance
of the operation amplifier:

Zi →∞.

To calculate the output impedance, we need to shut off any input (thus connect-
ing the positive pin of the operation amplifier to the ground) and to substitute
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the load resistance with, for example, a voltage source VS . Due to the presence
of a negative feedback, both input pins of the operation amplifier will be at
ground, therefore we cannot have any current flowing neither the negative pin
nor the R resistance (since both its ends are connected to ground) and this
means that the output current IS will be equal to zero, thus giving:

Zo =
VS
IS
→∞.

In this circuit, however, the load is floating, since it is not set at a reference
potential. If I want to have one end of the load to be grounded, I need to switch
the position of the load RL and of the resistance R. What will this lead to? The
student is ask to think about that.

1.5 Non-linear stages

We have seen in the previous section how it is possible to implement linear oper-
ations using the negative feedback system and linear components. However, this
is not the end of the story: using non-linear components (namely, capacitors) it
is possible to realize circuits that allows us to implement differential operations.
Before starting studying them, we need to remind a few, basic properties about
capacitors. Assuming ±Q to be the electric charge on each plate of the capacitor,
V the voltage drop across it and I the current (real current in wires or displace-
ment current in the dielectric material inside the capacitor) passing through it,
we can write:

Q = C · V

that the charge on the plates is linearly proportional to the voltage drop between
them; the proportionality constant is the capacity of the capacitor. Since we
know that the current is the time derivative of the charge and, in general, we
can assume the capacity to be constant:

I =
dQ

dt
= C

dV

dt
.

This relationship must be kept in mind while solving the following circuits.

1.5.1 Integrator

Figure 1.24: An integrator.
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The circuit of an integrator is represented in Figure 1.24. As we have said
many times, the presence of a feedback circuit8 and the fact that we are dealing
with an ideal amplifier set the negative pin of the operation amplifier at the
same potential of the positive pin and, since this last one is grounded, we will
have a virtual ground. This means that we are able to write the current flowing
through the resistance R as:

I =
Vi
R

and since the impedance of the negative pin of an ideal amplifier is infinite, it
will be equal to the current passing through the capacitor:

I = C
dVc
dt

.

Integrating this relationship, we obtain the voltage drop across the capacitor
and, consequently, the output voltage (that is equal to the voltage drop across
the capacitor with its sign changes):

Vo = −Vc = − 1

C

∫ T

0

I dt+ Vo(0) = − 1

RC

∫ T

0

Vi dt+ Vo(0)

where, in general, the output voltage at t = 0 is assumed to be zero. Therefore,
the output will be the integral of the input multiplied by a certain constant that
we can set designing the circuit.

1.5.2 Differentiator

Figure 1.25: A differentiator.

A differentiator is represented in Figure 1.25. Comparing its schematic with
the one of the integrator in Figure 1.24, we can see that the only difference
between them is in the position of the resistance R and of the capacitor C:
they are swapped. Again, since the system has a negative feedback and we are
dealing with an ideal operation amplifier, the inverting pin of the operation
amplifier will be at the same voltage of the positive one, thus representing a
virtual ground. This means that the current I flowing through the capacitor,
from the fundamental relationship of the capacitor, can be written as:

I = C · dVi
dt

8Always remember that this works since we are dealing with a negative feedback and
closed-loop circuit, otherwise it will not work.
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where Vi, that is the input voltage, is equal to the voltage drop across the capac-
itor. Then, since the impedance of the negative pin of the operation amplifier
is infinite, this current will pass through the feedback resistance R and we can
determine the output voltage as the voltage drop across this resistance with
changed sign:

Vo = −RI = −RC dVi
dt
.

We can immediately see that now the output voltage is proportional to the first
derivative of the input.
At this point, we are able to implement a lot of mathematical operations using
circuits and, as we have already said, from this property comes the name “op-
eration amplifier”. In fact, before the invention of the transistor, this was the
only way in which it was possible to implement analogically these operations,
thus solving differential equations.
Moreover, we can observe that the property we have discussed of the differentia-
tor and of the integrator that, being one the reciprocal operation of the other,
they can be realized only swapping two elements of the circuit, is a general
property and it will hold also for many others circuits.

1.5.3 Impedance representation

Figure 1.26: Bode plots of a differentiator and an integrator.

Usually, in electronics, it is widely the so called symbolic (or impedance)
representation. In it, we get rid of derivatives and integrals by using the Laplace
transform and the Laplace operator s. Considering for example the fundamental
relation of a capacitor in the Laplace domain:

I = C
dVc
dt
⇒ I = sCVc ⇒ Zc =

1

sC

we are able to write a Ohm’s law for impedances. Applying it to the previ-
ous circuits and substituting the capacitor with its complex impedance Zc, the
relation between input and output in an integrator can be written as:

Vo = − 1

sCR
Vi = −Zc

R
Vi

while for a differentiator:

Vo = −sRCVi = − R
Zc
Vi.

This notation is particularly useful since it allows us to represent the frequency
response of these circuits in Bode plots, as in Figure 1.26.
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1.6 Real operation amplifiers: DC and AC pa-
rameters

Up to now, we have studied only ideal operation amplifiers. However, these
kind of devices cannot be obtained, therefore we need to discuss the differences
between real operation amplifiers and ideal ones. Before starting, it is useful to
remind the main characteristics of an ideal operation amplifier:

• infinite voltage gain at every frequency;

• infinite bandwidth (as a consequence of the previous requirement);

• infinite input impedance;

• output impedance equal to zero.

The fundamental relationship for an ideal operation amplifier can be written as:

Vo = A
(
V + − V −

)
= A · Vd

where Vd is the differential input voltage, since we are dealing with a differential
amplifier.
Obviously, the real characteristics of an operation amplifier will be approxima-
tions of these ones: for example, instead of an infinite input impedance and
voltage gain we will have large (but finite) values of the input impedance and
of the voltage gain and instead of having an output impedance equal to zero we
will have a very small value of the output impedance. These real values can be
found in data-sheets.
Data-sheets are, in general, a list of parameters given by the manufacturer that
should be useful for describing the behaviour of a certain operation amplifier
depending on its model, on its characteristics and on the working conditions.
Data-sheets are usually divided into the following sections:

• “Features and General description”, sometimes also containing block di-
agrams, schematics and examples of applications of the operation ampli-
fier; it gives an overview of the operation amplifier, possibly stressing9 the
strong points of that particular model with respect to, for example, low
noise, high frequency, power, capability, ... depending on the target;

• “Absolute maximum ratings”, that states the condition in which the op-
eration amplifier is no longer able to work;

• “Operating conditions”, that states typical working conditions;

• “Electric characteristics”, that states the characteristics of the operation
amplifier from an electrical point of view;

• “Typical performance characteristics”, that states the typical performan-
ces of the operation amplifier in certain working conditions;

• other informations, such as dimensions, package, ordering informations
and so on.

We can now study in further details the most relevant sections.

9Advertising is everywhere!
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1.6.1 Absolute maximum ratings

Absolute maximum ratings are the maximum values of certain parameters that
the operation amplifier can safely tolerate. It is important to note that operation
beyond these values can possibly lead to a permanent damage of the device. In
particular, these parameters can be:

• input voltage;

• supply voltage;

• temperature;

• power dissipation.

Again, since these maximum values must not be exceeded, otherwise we can
permanently damage the device, we need to check these values during the circuit
design.
An immediate example of this is represented by the power dissipation. In fact,
the operation amplifier, aside from the input and output voltages that we have
previously seen, will require a connection to a supply voltage, in general much
higher than the input voltage, that will allow the operation amplifier to correctly
set the output. Considering an ideal amplifier, it will have an infinite input
impedance, therefore if we consider for example the design of the buffer stage
represented in the right-hand side of Figure 1.14 at page 16, we will not have
any dissipation of power at the input of the operation amplifier. However, the
operation amplifier will be connected to a supply voltage10 much higher than
the input voltage, thus setting an output voltage and leading to the following
power dissipation over the load resistance:

P =
V 2
i

RL
.

From these values we can calculate the current11 coming from the output as:

I =
Vi
RL

and therefore we will have a voltage difference between the supply voltage and
the output voltage equal to Vsup − Vi, thus determining a dissipation of power
inside the internal circuitry of the operation amplifier12 equal to:

Poa = (Vsup − Vi) · I.

This power, as any dissipated power, will generate heat, that will increase the
temperature of the operation amplifier with respect to the environment. How-
ever, we need to limit this temperature due to the characteristics of the device.

10For example, we can assume to have a supply voltage of 15 V, an output voltage equal
to the input one and equal to 2 V and a load resistance of 500 Ω. From these values, the
dissipated power over the load resistance will be equal to 8 mW.

11In the example considered, it will be 4 mA.
12Again, in our numerical example we have that the voltage difference between the supply

voltage and the output is equal to 15 − 2 = 13 V thus determining a dissipated power over
the operation amplifier of 13 V · 4 mA = 52 mW.
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In fact, an increase in the temperature of the device (that is basically a junction)
will generate an increase of the carriers density in the junction, thus increasing
the current flowing through the device. But this increase in the current will
increase the dissipated power in the operation amplifier, that will further heat
up the device, increasing the current and so on and so forth with a positive
feedback that, at the end, leads to the thermal runaway of the device.
In general, we can define θj,A the thermal resistance of our device (and it is a
parameter listed in the data-sheet with respect to a certain temperature of the
environment), therefore we can write the power dissipated across the operation
amplifier as:

P =
Tj − TA
θj,A

where Tj is the temperature of the junction and TA the temperature of the
environment. Obviously, to a certain maximum value of the dissipated power
Pmax will correspond a certain maximum temperature Tj,max of the junction
that must not be exceeded. From the value of the thermal resistance and of the
temperature range of the junction it is possible to work out the maximum power
dissipation across the operation amplifier, thus checking if we are respecting this
value during the design of a circuit. For example13, we can have:

Tj,max = 150◦C, θj,A = 103◦C/W

and if the environment temperature is 25◦C we have that the maximum dissi-
pated power will be:

Pmax = 1.2 W.

In general, we can say that the power dissipated in an operation amplifier can
reach several tens of watts.

1.6.2 Operating conditions

Operating conditions are recommended working conditions that are specified by
the manufacturers and in which the gain and the input and output impedances
are controlled and equal to certain expected values. In these intervals, therefore,
the operation amplifier is guaranteed to work as specified in the data-sheet. It
is important to note that these values will be in general lower than the absolute
maximum ratings that we have introduced in the previous section; moreover,
exceeding these conditions but being below the absolute maximum ratings the
operation amplifier will still be working but its characteristics will be somehow
unpredictable and different from the expected ones (that are specified in the
data-sheet). In particular, they are ranges of supply voltage, input voltage and
temperature (that are in general always specified) and of others parameters
depending on the choice of the manufacturer and on the strong points of that
model of operation amplifier.

With respect to the supply voltage, a dual symmetrical power supply is
almost always used14, as represented in Figure 1.27. This means that one supply
pin of the operation amplifier will be connected to a certain positive voltage
while the other will be connected to a certain negative voltage and that, apart

13These values are taken from slide 9 of lecture “L03” available on the teacher’s website.
14In general, we will implicitly assume this kind of power supply.



30 CHAPTER 1. OPERATION AMPLIFIER

Figure 1.27: Representation of an operation amplifier in which is represented
also the dual symmetrical power supply.

from the sign, these two voltages will be equal. These two pins will be called,
respectively, positive and negative power supply. Another possibility is to use a
single supply, in which one pin is at a certain positive voltage +Vcc while the
other is grounded. This second choice is in general easier in terms of sources,
but it will lead to additional complications in the design of the circuit. On the
data-sheet it is usually possible to find the supply voltage range, that states a
minimum and maximum value for the supply voltage ±Vcc.

1.6.3 Electrical characteristics

This section of the data-sheet shows the most important properties of an oper-
ation amplifier, usually reporting the minimum and maximum values of certain
variables at the operating conditions.

Input and output voltage ranges

In general, the input and output voltages (that are the voltages of the input
pins and of the output pin) must be between the positive supply voltage and
the negative supply voltage and, moreover, they cannot be chosen too close to
the power supply voltages. This means that the input and output voltage range
will be a little smaller that the power supply range (except in the case of special
designs) and, in general, we can assume, as a rule of thumb, this range to be
equal to:

± (|Vcc| − 1)

for the input, where |Vcc| is the absolute value of the dual symmetrical power
supply voltage. Moreover, it is also possible to define a common-mode input
range, that will be related to the input voltages of the two input pins by the
following relationship:

V + − V −

2
.

For the output voltage, again, we can say that it must always be between the
positive power supply voltage and the negative one (in the case of dual sym-
metrical power supply). Therefore, the supply voltage range will limit the so
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called output voltage swing (that is how it is generally called the output volt-
age range). If we are out of this condition, the transistors inside the operation
amplifier will saturate.

Large-signal voltage gain

Figure 1.28: Example of a non-linear input-output characteristic of an operation
amplifier.

In Figure 1.28 it is possible to observe a possible representation of the input-
output characteristic of a real operation amplifier. This curve can in general be
measured by setting a voltage difference Vd between the two input pins of the
operation amplifier and measuring the output voltage Vo of the amplifier and it
represents the fourth check15 that we need to perform over an operation amplifier
before using it. In this graph, we can observe that the unit of measurement for
the vertical axis will be, in general, volts, while for the horizontal axis we will
use fractions of millivolts; this means that, in reality, the slope of this curve
should be quite high.
For small values of the differential input voltage Vd, it is possible to write a
linear approximation of this curve, while near to the limiting values of the
output voltage (that will obviously be within the supply voltage range) this
linear approximation will not be accurate and we can say that the operation
amplifier will be saturating. The slope of the linear approximation of this curve
for small values of the differential input voltage is the gain AV in the operating
conditions. In general, it is written using decibels:

AV |dB = 20 · log10 (|AV |)

and it is called large-signal voltage gain since it will approximate the behaviour
of the output with respect to the input over the whole output range (except
for saturation). Typically, this value is between 80 and 120 dB and it will not
be constant, depending on a lot of parameters such as the supply voltage Vcc,
the load resistance RL, the temperature T and so on. In general, manufacturers
specify, in data-sheets, an interval of typical maximum and minimum values for
this gain and, since it will be almost equal to the open-loop gain of negative
feedback systems, it will be useful to control if the minimum value of this gain
allows us to have a strong enough loop.

15Before this, we need to check the absolute maximum ratings, the operating conditions
and the input and output voltages.
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Input offset voltage

Figure 1.29: Example of an input-output characteristic of an operation amplifier
with an input offset voltage.

A second non-linearity of the input-output characteristic, different from the
previous one, is represented by the input offset voltage in Figure 1.29. While
in an ideal amplifier the input-output characteristic can be described by the
following relationship:

Vo = AV · Vd

in a real operation amplifier it is possible to have an input offset voltage Vos:

Vo = AV · (Vd − Vos) .

This offset voltage can be either positive or negative and it is usually specified,
in data-sheets, as an absolute value. Typically, it will be in the order of a few
millivolts (from 1 to 5) or smaller (precision operation amplifiers will have an
offset in the order of a few hundreds of microvolts).
In general, this offset is strongly technology dependent, since it is a consequence
of the inner design of the operation amplifier. In fact, the two input pins of an
operation amplifier are in general the base or gate pin of a transistor (depending
on the kind of transistor considered). Ideally, these transistors are completely
identical, thus treating the same input voltage in the same way. However, as
any physical device, it will be impossible to have two transistors completely
identical and therefore even applying the same voltage at the two input pins we
will obtain a slightly unbalanced circuit, with currents flowing more in one pin
than in the other. Therefore, the mismatch in the input transistors will cause
the presence of an input offset voltage and, since the gate or base voltage will
determine different currents in the transistor depending on the type of transistor
we are dealing with, we will have that this input offset voltage will be strongly
technology dependent. This means that, depending on the type of transistors
used in the internal design of the operation amplifier, we will obtain different
offsets:

• in the best BJT transistors, it will be between 10 and 25 µV;

• in the best JFET transistors, it will be between 100 µV and 1 mV;

• in the best CMOS transistors, it will be between slightly less than 100 µV
and 1 mV.
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These differences are due to the fact that is much easier to make two BJTs that
are similar, than two similar JFETs or CMOSs. Designing a circuit, therefore,
we need to ask ourselves whether the input offset voltage Vos is an important
parameter of the circuit, that can possibly have a strong influence on its be-
haviour, giving problems or limitations: this will guide our choice toward one
technology instead of another one.

Figure 1.30: On the left-hand side, a real amplifier with a certain input offset
voltage; on the right-hand side, the same circuit is represented using an ideal
operation amplifier.

Since the input offset voltage is nothing but a shift of the zero of the input-
output characteristic (and thus an error in the value of the output voltage), in
which to a zero input will correspond a non-zero output, this characteristic can
be taken into account by adding an ideal voltage source equal to the input offset
voltage to one of the two input pins, as represented in Figure 1.30.
However, another important parameter that we need to take into account is the
offset voltage drift16. This parameter is defined as the derivative of the input
offset voltage with respect to the temperature:

dVos
dT

[
µV
◦C

]
.

This represents an important check, since we have to be sure that in the tem-
perature range of our device the offset input voltage is not only tolerable but
also it cannot change to much if the temperature changes. Typically, values for
general purposes operation amplifiers are between 1 and 10 µV/

◦
C, while for

low drift operation amplifiers (in which this term is more dependent on the de-
sign of the circuit than in its technology) it will be lower than 0.3 µV/

◦
C. A

particular family of devices called “chopper-stabilized” or “auto-zero” operation
amplifiers then have an offset input voltage lower than 1 µV and have an offset
voltage drift lower than 30 nV/

◦
C.

Input bias current

In the previous section, we have said that the input pins of an operation ampli-
fier consist in two transistors. From this, we can add another possible difference
between an ideal operation amplifier and a real device. In fact, it is possible to
have currents flowing through the input pins of these transistors, thus making
the input impedance different from infinite; these currents are called bias cur-
rents and they are strongly dependent on the technology adopted.

16In general, the word drift means the dependency from the temperature of a certain pa-
rameter.
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Figure 1.31: Schematic representation of the internal circuitry of an operation
amplifier.

In the case of BJTs as input stages, we know that these transistors requires a
continuous base current Ib that, therefore, will be between 10−8 and 10−6 A. If
we use JFETs as input devices, the transistors are reverse-biased p-n junctions
and therefore the base current will be the reverse bias current of the junction,
thus being between 10−13 and 10−10 A.
In the case of MOSFETs, the situation need to be further explained. In fact,
we know that the gate of this transistor is separated from the remaining part
of the device by an insulating layer that, ideally, will have a very small leakage
current. However, since these transistors are actually extremely small, they will
have a very small capacitance, therefore:

Q = CV → V =
Q

C

an extremely small change in the charge at the interface with the oxide (for
example, determined by the static electricity that is always present) will cause
a significant change in the voltage across the oxide layer, eventually breaking
it. Therefore, some protection devices are needed for not breaking the oxide
layer. These protections are called Electro-Static Discharge (ESD) protection
circuits and they are, basically, diodes, thus having a certain leakage current
that represents the bias current of the device and that will be between 10−13

and 10−10 A. The previous numbers, aside from the technology, will then depend
also on the design of the circuit.

Figure 1.32: On the left-hand side, a real amplifier with a certain input bias
current; on the right-hand side, the same circuit is represented using an ideal
operation amplifier.

In real devices, therefore, we have certain currents entering the input pins.
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This means that, for representing a circuit using an ideal operation amplifier
as in Figure 1.32, we need to add two ideal current sources17. In general, then,
the bias current entering the positive pin I+

b is different from the bias current
entering the negative pin I−b , therefore in data-sheets we can usually find the
average value of these currents Ib and the offset current Ios, that is defined as
the difference between them:

Ib =

∣∣∣∣I+
b + I−b

2

∣∣∣∣ , Ios =
∣∣I+
b − I

−
b

∣∣ .
As a rule of thumb, we can say that:

Ios '
Ib
10
.

Moreover, both these values are in general dependent on the temperature, thus
determining a drift of the bias current and of the offset current. Since then the
bias current is larger than the offset one, the drift of the bias current will be
more important and it will be strongly dependent on the technology adopted.
In general, in FET and CMOS operation amplifiers both the bias current and
the offset current are increased by a factor two every 10◦C, since they are reverse
currents in p-n junctions18. Therefore, when designing the circuit we need to
check that the bias and offset currents are lower than the maximum value over
the whole temperature range. On the other hand, BJT operation amplifiers
have usually lower drifts, between 10 and 100 pA/

◦
C, with an almost linear

dependency of the current from the temperature. However, we have previously
seen that in BJTs (that have better performances with respect to FETs and
CMOSs in terms of drift) will have a bias and offset current higher than the
values for FETs and CMOSs. Therefore, a trade off is needed in the choice of
the technology for the operation amplifier, depending on the drift and the values
needed.

Input offset voltage compensation

Since we have previously seen the presence of an offset voltage in our device, we
can now investigate the techniques that are at our disposal for compensating
this offset. In particular, there are two main ways of doing it: one is provided
by the manufacturer, the other requires a do-it-yourself approach.

In the first solution, the operation amplifier has two additional pins, called
the offset null pins, to which we can connect an element (for example a variable
resistance) according to a detailed compensation scheme provided by the manu-
facturer in the data-sheet. Trimming this variables resistance and making some
measurements on the operation amplifier (in particular, after having connected
the two input pins with a short-circuit), it is thus possible to compensate the
presence of an input offset voltage.

In this second case, we can bias one of the two input pins (for example,
the positive input pin, as represented in the right-hand side of Figure 1.34) at

17Carefully think to the orientation of these sources and the current flows that they de-
termine: you always want the bias currents to seem to be entering the pins of the operation
amplifier.

18We remember that in semiconductor devices the carrier density, that determines these
currents, has an exponential dependency on the temperature, thus giving a significant drift.
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Figure 1.33: Manufacturer-provided solution for offset compensation.

Figure 1.34: Do-it-yourself solution for offset compensation.

a voltage equal to −Vos. This can be done using a suitable voltage partition
involving a variables resistor, that will allow the trim of the circuit.

Bias current compensation

Figure 1.35: Bias current compensation.

In the same way, we can study the effect of a bias current on the output and
how it is possible to compensate it. Considering Figure 1.35, we know that if
we set the negative input pin to ground and we neglect the bias currents, we
should obtain that also the output is at ground (since the positive input pin is
already at ground). However, this is not possible and thus we need to further
study the circuit.
First of all, we can start considering:

R = 0.
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Under this condition, the circuit can be studied by superposition principle and,
setting the negative bias current at zero:

I−b = 0 ⇒ Vo = 0

while if we set the positive bias current to zero then the non-zero negative bias
current will flow through the resistance R2 (but not through R1), thus leading
to the following output:

I+
b = 0 ⇒ Vo = I−b R2.

Therefore, the overall output will be obviously different from zero:

Vo = I−b R2.

This means that we need to compensate this effect that is related to the presence
of the bias currents and, to do this, we can assume to have a resistance R on
the circuit that is different from zero. Again, also in this case we can study the
circuit applying the superposition principle and therefore observe that if the
positive bias current is zero the response of the circuit is identical:

I+
b = 0 ⇒ Vo = I−b R2

while if the negative bias current is zero the output voltage will be:

I−b = 0 ⇒ V + = −I+
b R ⇒ Vo = −I+

b R
R1 +R2

R1

since we have recognized that this is a non-inverting amplifier19. By superposi-
tion principle, therefore, we get:

Vo = I−b R2 − I+
b R

(
R1 +R2

R1

)
= IbR2

(
1− R

R1‖R2

)
+ Ios

R2

2

(
1 +

R

R1‖R2

)
where the symbol ‖ means that the two resistors are in parallel. If we set the
following value of R:

R = R1‖R2

that, from a physical point of view, is equivalent to setting the equivalent resis-
tance seen from the positive input pin equal to the equivalent resistance seen
from the negative input pin, we obtain that the effects of the bias current are
compensated:

Vo = IosR2

and we are left only with the effects of the offset current. Obviously, this kind
of compensation is useful only if the offset current is much lower than the bias
one:

Ios � Ib.

Moreover, we know that the bias and the offset currents will depend significantly
on the temperature, therefore a change in the temperature will make the circuit

19It is important to be able to study circuits recognizing inverting and non-inverting am-
plifiers and thus applying their fundamental relationships. In fact, solving every time from
scratch the circuit can be extremely time consuming.
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not compensated. This means that it has to be periodically compensated using
other techniques.
Summing up, not compensating the effects of the offsets and of the bias, we
can get errors in the output voltage. Moreover, we must very carefully pick
compensation resistors in order to not alter, with their value, the gain of the
operation amplifier. Finally, we will not be able to compensate drifts and long-
term instabilities by using these solutions.

Total error for the inverting amplifier

Figure 1.36: Computation of the total error for the inverting amplifier.

We can now calculate the effects of an offset voltage and an offset current
(the bias current has been removed as described in the previous section) on the
output of an inverting amplifier. This can be done, considering the circuit in
Figure 1.36, by linear superposition20, thus obtaining the following expression
for the output:

Vo = −R2

R1

(
Vi − Vos

R1 +R2

R2
− IosR1

)
.

Observing this expression, we can see that it is composed by three terms: the
first relates the input to the output, the second relates the offset voltage to the
output and the third one relates the offset current to the output. The second
term will then be called offset voltage error and the third one the offset current
error and, together, they will be the error.
For having a certain gain, we need to impose:

R2 > R1

and this means that the offset error we will have:

R1 +R2

R2
' 1.

Therefore, the overall error will depend on the size of the input voltage with
respect to the offset voltage and on the size of R1 (in fact, decreasing it we
can make the offset current error smaller). However, since R1 is also the input
impedance of the operation amplifier, we need to have an high value of R1 for
making the amplifier similar to an ideal one. These two contrasting requirements,
therefore, will give the need of a trade off in the choice of the input resistance
R1.

20The student is ask to solve this circuit as an exercise.
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Total error for the non-inverting amplifier

Figure 1.37: Computation of the total error for the non-inverting amplifier.

We can represent a non-inverting amplifier with a non-zero offset current
and a non-zero offset voltage as in Figure 1.37. Solving again the circuit by
superposition21, we can obtain the following output voltage:

Vo =
R1 +R2

R1
[Vi + Vos + Ios · (R1‖R2)]

where, again, the last two terms represent the error. In this case, we can observe
that the offset voltage is directly competing with the input voltage, therefore
again we need to have an input voltage that is significantly higher than the offset
one. Moreover, in this case we do not have any specific trade off, since the parallel
R1‖R2 controls the offset current error and we can safely minimize it, while the
gain is controlled by the ratio (R1 + R2)/R1. Finally, the input impedance of
this non-inverting amplifier is infinite. These properties, therefore, makes the
minimization of the error easier in the non-inverting amplifier.

Input and output resistance

Figure 1.38: Input impedances.

Another difference between an ideal operation amplifier and a real operation
amplifier is that the input impedance is not infinite. Since the input of an
operation amplifier is characterized by two pins, we need to describe them with
an equivalent circuit as in Figure 1.38. This can be done by adding a differential
resistance Rd that connects the two pins and by two common-mode resistances

21This solution is left to the student.
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Rc that connects each input pin to the ground and that, in general, can be
assumed to be identical. Moreover, we can say that in general:

Rc � Rd

and, in many cases, the common-mode resistances are negligible. Sometimes,
the values of these resistances are specified by the manufacturer in the data-
sheet, but it can happen to have only the value of a certain, not further specified
input resistance, that can in general be approximated with Rd. Moreover, it is
possible to add a small input capacitance Cin (its value will be approximately
of a few picofarads) in parallel to the differential resistance and that must be
considered at high frequencies (in fact, even if small, it can give some problems
in the stability of the circuit).
The values of these resistance are largely dependent on the technology: for a
typical BJT, they will be between 105 and 108 Ω; for a typical JFET, they will
be between 109 and 1010 Ω; for a typical CMOS, they will be in the order22 of
1012 Ω. Moreover, it is important to remember that the network to which these
resistances are equivalent can be extremely complicated.

Figure 1.39: Output impedances.

The output resistance, on the other hand, will in general be a series resistance
Ro connected between the voltage-controlled voltage source and the output pin,
as shown in Figure 1.39. It will be typically smaller than 100 Ω or slightly higher
in the case of CMOS operation amplifiers.

1.7 Instrumentation amplifiers, Common-Mode
Rejection Ratio and Power Supply Rejec-
tion Ratio

Now, we are able to deal with some characteristics of the operation amplifiers
that are more related to the use we make of it in a certain instrumentation.



1.7. INSTRUMENTATION AMPLIFIERS, CMRR AND PSRR 41

Figure 1.40: Common and differential modes.

1.7.1 Common and differential modes

In an operation amplifier, given the input voltages at the positive pin V + and
at the negative pin V −, we can define the common-mode voltage:

Vc =
V + + V −

2

and the differential-mode voltage:

Vd = V + − V −

as a possible definition of different input variables. We can immediately see that
they can be represented as in Figure 1.40 and their values are usually given
by the manufacturer. From them, reversing these relationships, it is possible to
obtain back the voltages at two input pins:

V + = Vc +
Vd
2
, V − = Vc −

Vd
2
.

The meaning of these two new variables can be understood by linear superposi-
tion. In fact, if the differential-mode voltage is equal to zero, then the common
mode voltage Vc will be the voltage applied to both the positive input pin and
the negative input pin, thus being the voltage in common. On the other hand,
if we set the common-mode voltage to zero, we will have a perfectly symmetric
and zero-average signal applied to the two pins:

V − = −V +

thus being a truly differential signal. Again, the output of the ideal operation
amplifier will depend only on the differential-mode voltage:

Vo = A(V + − V −) = AVd.

1.7.2 Common-mode rejection ratio

In a real amplifier, however, the output voltage is not only related to the
differential-mode voltage, but it is also related to the common-mode voltage
through a suitable gain:

Vo = AdVd +AcVc = Ad

(
Vd +

Ac
Ad

Vc

)
= Ad

(
Vd +

Vc
CMRR

)
.

22This value is extremely high and, in general, it will be really difficult to measure.
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In an ideal amplifier, this common-mode gain Ac will tend to zero, but in a
real amplifier it will be a finite quantity. From the previous formula, therefore,
we are able to define a factor CMRR that stands for Common-Mode Rejection
Ratio that express the residual part of the common-mode voltage that pass to
the output.
Again, in ideal amplifiers the common-mode rejection ratio is infinite, thus stat-
ing the impossibility for the common-mode signal to be transformed into a
differential one and thus passing to the output. For example, we can consider
the following real amplifier:

CMRR = 120 dB = 106, Vc = 5 V, Vd = 0

that will have the following output voltage (if the differential signal is zero):

Vo = Ad ·
Vc

CMRR
= Ad · 5 µV.

This means that a common-mode signal of 5 V is passed to the output as if it
were a 5 µV differential signal.

1.7.3 Power supply rejection ratio

Figure 1.41: A residual oscillation in the supply voltages will pass to the output
voltage reduced by the power supply rejection ratio.

Aside from the previous possibility, it is also possible that a small fluctuation
in the power supply voltage is passed to the output of the operational amplifier.
To study it, we need to set both the common-mode and the differential-mode
voltages to zero, as in Figure 1.41. In fact, we will never have a constant power
supply, since it will always show small fluctuations that will be, for example,
residuals of the rectification of the supply signal (or bias, or regulators), and
that will always have a non-zero transfer to the output (since it is not possible
to perfectly decouple these signals). Again, we can define a certain gain for these
power supply fluctuations Vps, thus obtaining:

Vo = AdVd +ApsVps = Ad

(
Vd +

Aps
Ad

Vps

)
= Ad

(
Vd +

Vps
PSRR

)
.

Therefore, we can define a Power Supply Rejection Ratio23 PSRR that is the
ratio between the power supply disturbs and the differential signal that gives
the same output:

PSRR =
Ad
Aps

.

23It can also be called Voltage Supply Rejection Ratio V SRR.
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This term will represent an additional source of noise and it will depend on how
noisy is the environment of the operation amplifier.

1.8 Frequency response of OA circuits

We can now start to study the properties of operation amplifiers with respect to
the frequency on the input signal. Using the Laplace transform24, the open-loop
gain, that is the gain of the operational amplifier, can be usually described as a
decreasing function of the frequency and, therefore, as a single-pole function:

A(s) =
A0

1 + sτ
.

Figure 1.42: An example of a single-pole transfer function.

As it can be seen from the Bode diagram in Figure 1.42, at a certain fre-
quency the gain of the operation amplifier will become unitary. Since the fre-
quency can be related to the angular frequency as:

f =
ω

2π

we can define the gain-bandwidth product GBWP as the frequency at which
the gain is unitary; from the expression of the gain we have written before, it
means that:

GBWP =
A0

2πτ
.

In general, the gain-bandwidth product goes from the hundreds of kilohertz to a
few megahertz, while the pole of the transfer function is in general between 1 and
10 Hz. In data-sheets, manufacturers usually give the zero gain A0 and the gain-
bandwidth product. It is important to note that, since the gain of the operation
amplifier is the open-loop gain in negative feedback systems, the decrease of the
gain can leads to problems when dealing with high-frequency signals (where the
word “high” means in the order of the gain-bandwidth product).

To understand the slew rate, then, we need to further investigate the internal
circuit and the block scheme of an operation amplifier, that is represented in

24We remember that the Laplace operator can be written as:

s = jω.
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Figure 1.43: Block scheme of an operation amplifier and corresponding internal
circuit highlighted.

Figure 1.43. Basically, any operation amplifier can be divided into three blocks,
that can be individually optimized, thus having an higher flexibility. The first,
input stage consists in a transconductance amplifier, that takes as an input a
differential voltage and gives as an output a current. The second stage is the
gain stage, in which the input signal is actually multiplied by a certain factor.
The third stage is the output stage, that has a unity gain and that gives the
output voltage. In the Figure, then, we can notice the presence of a capacitance
that is in parallel with respect to the gain stage. In fact, without this capacity,
the system will never be stable, due to the presence of poles in the gain stage.
This means that we need to add this compensation capacitance across the gain
stage, that acting as an integrator will make it stable.
From what we have discussed in previous sections, in a certain interval of input
differential voltage the input-output characteristic of the amplifier is almost
linear. Outside from the input range, the system saturates and therefore, from
the input stage, we will obtain a maximum, saturation current that can be
written as Isat. This current, then, will flow through the gain stage in parallel
with the capacitance, therefore across this integrator. This means that we will
be charging the capacity C and, calling t the time passed from an initial moment
set to be the one in which the current has saturated to Imax, we can write the
voltage across the capacitor as:

Vc =
Imax
C

t.

This means that when we have a certain instantaneous modification of the input
voltage from one value to another one that causes the saturation, the output
voltage will not pass instantaneously to its saturation value, but it will increase
(at least initially) linearly with time toward its saturation value.

Therefore, while the current coming from the input stage can change abrup-
tly, reflecting the change in the input differential voltage, the output voltage
will increase up to its maximum value in a certain finite time (in which the
capacitor is charged). The derivative of the increase of the output voltage as a
consequence of an abrupt increase in the input voltage is defined as the slew
rate:

SR =
dVo
dt

∣∣∣∣
max

=
Imax
C

.
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Figure 1.44: Representation of the slew rate due to the presence of a compen-
sation capacitance across the gain stage.

Typical values for this coefficient are between 1 V/µs and 100 V/µs or more.
This is the first explanation of the non-linearity of the behaviour of the device
over an infinite interval of inputs.
We can now investigate what happens when we apply a sinusoidal input. For
example, we can consider a buffer stage at which we are applying a sinusoidal
input. If the frequency of the sinusoidal input is low enough to make the in-
crease in the sinusoidal signal be below the slew rate, then the output will be
proportional to the input, thus being sinusoidal. If we write the output signal
as a consequence of a sinusoidal input as:

Vo = VM sin(ωt)

we can express the previous condition as:

dVo
dt

∣∣∣∣
max

= ωVM < SR

and from the definition of frequency with respect to the angular frequency:

f <
SR

2πVM
.

If we assume that the operation amplifier is working at its maximum swing
V maxo , then for not being limited by the slew rate the frequency of the input
(and thus of the output) signal must be lower than a parameter called full-power
bandwidth FPBW :

f ≤ SR

2πV maxo

= FPBW.

Increasing the frequency above this value, we will obtain distortions in the out-
put, that will not follow a sinusoidal shape but will rise in a straight line limited
by the slew rate. Therefore, in a more formal way we can define the full-power
bandwidth as the frequency at which we can work at full power supply without
obtaining any distortion.

1.9 Typical performance characteristics

We are now able to study a few examples of data-sheets, observing what are
some typical values for the previously defined parameters. Again, it is worthy
to recall that there a few common data that are always reported, while others
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Figure 1.45: (a) Input voltage swing; (b) Output voltage swing; (c) Output
voltage swing as a function of the load resistance.

depends on the choice of the manufacturer, somehow reflecting also the strong
points of that kind of device.

In Figure 1.45 we can observe on the left-hand side the input voltage swing
and in the centre the output voltage swing of a certain amplifier. It is impor-
tant to note that both are a little smaller than the power supply voltage and,
moreover, they are not symmetrical with respect to the input and to the output,
thus determining the fact that positive and negative swings are not the same.
On the right-hand side, we can observe the dependence of the output voltage
swing on the load resistance. To understand it, we can observe that if we have a
load resistance between the output voltage and the ground, to a certain output
voltage it will correspond a certain current passing through the load resistance
and that must be provided by the power supply. Since the power supply can
provide only a limited amount of current, if the load resistance is too small the
limitations to the current will limit the output voltage at a value that is lower
than the saturation one. On the other hand, if the load resistance is big enough
we can easily reach the saturation value of the output swing since the current
needed will always be provided by the voltage supply.

In Figure 1.46, we can immediately recognize the Bode diagram of the gain
in the top left corner. In this graph, we can find the value of the gain for
continuous signals and determine the value of the gain-bandwidth product, that
can be further analysed in the zoom in the top right corner. In the bottom
left corner we can find the open-loop gain as a function of the temperature for
different values of the load resistance; also here it is possible to observe that the
positive and negative gains are not exactly equal, thus giving a non-symmetrical
behaviour. In the bottom right graph, we can in particular observe how the
supply voltage specified is almost equal to the saturation output voltage. All
the graphs show various non-linear behaviours that make clearer why we need
to create circuits with negative feedback loops.

In Figure 1.47 we can study the offset voltage and its drift for different opera-
tion amplifiers. Immediately, we can observe how the offset voltage can be either
positive or negative and has a certain statistical distribution with an average
value (that in general is zero) and a certain standard deviation. In the right-
hand side we can find the drift of the offset voltage, that in the bottom graph
is expressed as the drift coefficient on the horizontal axis. Moreover, we can
observe that in a JFET the input offset voltage is almost an order of magnitude
higher, while the BJT has worse performances in terms of drift.

In Figure 1.48 it is shown the direct dependency of the bias current from
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Figure 1.46: From top left to bottom right: voltage gain as a function of the
frequency, zoom of the previous graph, open-loop gain as a function of the
temperature, input voltage as a function of the output voltage in a low-power
CMOS.

the temperature in different technologies. Immediately, we can observe that
while in the BJT the scale is linear on the vertical axis, in the JFET and in the
CMOS we have a logarithmic scale, thus determining an exponential dependence
and a much more significant variation of these currents. However, the unit of
measurement for these axis are nano-ampere for the BJT and pico-ampere for
JFET and CMOS, thus being much lower in these last cases. This means that
while the size of the bias current increases from right to left, the drift of the bias
current increases from left to right, depending on the technology. The dotted
lines in the CMOS graph means that that measurement was impossible since the
value was too low. It is then possible to observe that at very high temperatures
(for example, 125◦C) the three technologies have almost the same value of the
bias current; moreover, we have to remember that the temperature depends also
on the power dissipation.

In Figure 1.49 these characteristics about the bias current come from a par-
ticular model in which the bias current is extremely low, being in the order of a
few femto-amperes. In this case, offset currents are comparable to the bias cur-
rent and this can be achieved using a special design with an additional current-
providing circuit called bias-cancellation circuitry. The take-home message, in
this case, is that it is possible to obtain extreme performances using a suitable
design.

In Figure 1.50, the open-loop output impedance is represented as a function
of the frequency and of the output current. In the left-hand side, where it is
represented as a function of the frequency, we can observe that the output
impedance is not exactly a pure resistance, since it is not independent from the
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Figure 1.47: On top, the statistical distribution of the offset voltage and the
drift in precision BJT operation amplifier; below, the same parameters for a
JFET operation amplifier.

Figure 1.48: Bias current as a function of the temperature for a BJT (left), a
JFET(centre) and a CMOS (right).

frequency, even though this can be a quite good approximation. In the right-
hand side, we can observe that the output impedance tends to become smaller
when we increase the output current of the device. These data come from a
power operation amplifier, that is designed for high power applications, thus
being able to tolerate quite high currents.

In Figure 1.51 we can observe how the common-mode rejection ratio and the
power supply rejection ratio decrease with frequency. In general, this is not good,
since it makes very challenging to be able to reject high frequency common-mode
noise signals and power supply noise signals. In this case, the main check that
we need to perform is that these two parameters are large enough in particular
at 100 Hz (approximately), where we have the residual of the rectification of
the sinusoidal power supply.

In Figure 1.52 we have the representation of the gain-bandwidth product
(and in the first case, also of the phase margin) for three totally different op-
eration amplifiers, that show a completely different behaviour as a function of
the temperature. The one on the right-hand side, in particular, is an operation
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Figure 1.49: Input bias current as a function of the input voltage and of the
common-mode voltage in a particular model.

Figure 1.50: Output impedance as a function of the frequency and of the output
current.

amplifier that works better when we have large loads.
In Figure 1.53 we can observe the temperature dependence and the differ-

ential input voltage dependence of the slew rate. In particular, we can observe
that we have a difference between the positive slew rate, associated to a rise in
the signal, and the negative slew rate, that is associated to a fall in the signal.
In the bottom left picture, it is represented the effect of the finite slew rate on
a square wave signal and, on the right, the same square wave gives a different
output on a different operation amplifier, with a very peculiar initial infinite
value of the slew rate, that after a while becomes finite.

In Figure 1.54, we can observe the peak-to-peak output voltage as a function
of the frequency of the signal. For low frequencies, we are able to completely re-
cover the signal up to the saturation value of the output voltage, thus giving the
straight line behaviour on the left side of the graph. At a certain frequency, this
behaviour changes: the frequency at which we have this change (represented in
the Figure by the first arrow) is the so called full-power bandwidth. Further in-
creasing the frequency, we need to limit the output swing of the signal, otherwise
we will not be able to fully recover it. Since we must have:

2πfVo = SR ⇒ Vo =
SR

2πf
∝ 1

f

we can immediately explain the dependency of the maximum output voltage
with respect to the frequency. In fact, further increasing the frequency we need
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Figure 1.51: Common-mode rejection ratio and power supply rejection ratio as
a function of the frequency.

Figure 1.52: Gain-bandwidth product for three different operation amplifiers as
a function of the temperature.

to decrease the output voltage in order to not have any distortion (as shown
from the second arrow). It is important to note that this limitation is due to
the fact that we are dealing with a single-pole network and that other operation
amplifiers will have a full-power bandwidth even much smaller than this one.

In Figure 1.55 we can observe some typical outputs from step inputs and a
possible graphical representation of the slew rate depending on the size of the
step imposed. All these graphs are shown in the approximation of small-signal
response.
As a conclusion, we can say that data-sheets provide an extensive characteriza-
tion of the behaviour of an operation amplifier and that it is not necessary to
consider all these information. In fact, we only need to check possible limiting
factors depending on our application and using this as a guideline for choosing
the best operation amplifier depending on our requisites.

1.10 Stability of the feedback loop

In the previous sections, we have seen that the gain of a real operation amplifier
is always finite. We can now investigate the effects of this finite gain on the loop
gain in feedback circuits.
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Figure 1.53: Above, slew rate as a function of the temperature and as a function
of the differential input voltage; below, two effects of the finite slew rate.

1.10.1 Loop gain

Given the circuit in Figure 1.56, we can remember that, in this general circuit,
the operation amplifier is generally hidden inside the open-loop gain Gol. If
the gain A of the operation amplifier is not infinite, also the gain Gol of this
element will not be infinite and therefore, as we will show, the loop gain will
not be infinite. To calculate the loop gain, we need to set the input signal of
the whole network to be zero. Then, we cut the feedback loop (for example as
in Figure, but it is possible to use every other point of the loop) and we inject,
in the sense of the feedback, a test signal Stest. We can then study the output
signal coming from this input one and observe that it will be equal to:

Sout = −GolFStest = Gloop

where we have defined the loop gain as:

Gloop = −GolF.

Note that the loop gain is a property of the loop and it is independent from the
breaking point. Moreover, we can remember that the actual gain of the whole
network with respect to the usual input will be:

G =
Gol

1−Gloop
=

Gid

1− 1
Gloop

and it will be different from the ideal gain Gid if, due to the fact that we are
dealing with a real operation amplifier, the open-loop gain (and consequently
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Figure 1.54: Peak-to-peak output voltage as a function of the frequency.

the loop gain) is not going to infinite. We can therefore define 1/Gloop as the
error we are committing on the gain of the network with respect to the ideal
one.

First of all, we can try to calculate the loop gain in a non-inverting amplifier,
as shown in Figure 1.57. The starting point is to turn off the input, thus setting
the positive pin of the operation amplifier to ground. Then, we can break the
loop: note that in the Figure we have chosen two different points (in the left-
hand side with respect to the right-hand side) for breaking the loop. Starting
from the left-hand side network, that is simpler, we are directly applying a test
signal VT to the inverting pin of the operation amplifier. This gives, as an output
of the operation amplifier:

A(V + − V −) = −AVT

and performing a voltage partition we are immediately able to calculate the
output test signal:

Vo = −AVT
R1

R1 +R2

and thus the loop gain of the network:

Gloop =
Vo
VT

= −A R1

R1 +R2
.

Since the loop gain is a property of the network and it is independent from the
breaking point, we should be able to retrieve the same result from the right-
hand side network. In this second case, a voltage partition is needed to find the
inverting pin of the amplifier:

V − = VT
R1

R1 +R2

and then, from the constitutive relationship of the operation amplifier:

Vo = A(V + − V −) = −A R1

R1 +R2
VT

we can obtain again the previous loop gain:

Gloop = −A R1

R1 +R2
.
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Figure 1.55: Top left corner: comparison between a square wave input signal
and the output obtained; top right corner: dependency between the size of the
step at the output and the time needed for covering the whole increment, or the
99%, or the 99.9%; bottom left corner: example of signal.

Figure 1.56: Calculation of the loop gain in a general circuit.

From the previous discussion, we can consider now a new breaking point,
indicated in the right-hand side of Figure 1.58 by the word “cutline”. Apply-
ing a test signal, for example a current IT to this point, we can observe that
this current will flow only through R1 (the input impedance of the operation
amplifier is infinite, we are removing one ideal characteristic of the operation
amplifier at a time), thus giving the voltage of the inverting pin:

V − = R1IT = VT

and, from the characteristic of the operation amplifier we obtain:

Vo = −AVT

a different loop gain with respect to the previous case. This result is therefore
not consistent with what we have said, so we must have committed some errors.
To obtain the correct loop gain, we need to perform the so called impedance
reconstruction. In fact, if the loop is closed, the same current is flowing through
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Figure 1.57: Calculation of the loop gain in a non-inverting amplifier.

Figure 1.58: A different breaking point will lead to a different loop gain, therefore
impedance reconstruction is needed.

the resistance R1 and through the resistance R2 due to the properties of the
network. However, using this last cutting point, if we do not modify the network
we will not have any current flowing through the resistance R2 and this means
that we are studying a different network: we have changed the working point of
the loop. This means that when we analyse the loop gain we must ensure that
we are not changing the working conditions and, in particular, that the resistive
load of each node is identical before and after the cut. Therefore, every time we
break a loop we must perform the so called impedance reconstruction, adding
an impedance Z connected to the breaking point and assuming it to be equal to
the impedance seen from the breaking point in the loop direction. It is extremely
important that this reconstruction impedance is calculated along the forward
direction of the loop and connected to the breaking point: every other change
will lead to a wrong result. This impedance reconstruction has been performed
in the right-hand side of Figure 1.58 and, from a brief analysis of the circuit, we
can immediately observe that we obtain the correct result.
However, we are now able to go back to the examples in Figure 1.57 at page
54 and ask ourselves why we obtained the correct result even without the
impedance reconstruction. To understand it, we can calculate the equivalent
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impedance seen from the breaking point in the forward direction and observe
that in the left-hand side network it will be infinite, therefore not affecting
the circuit. This leads us to a quite important general rule: points with infi-
nite impedance are always good points for breaking the loop, since there will
not be any need for impedance reconstruction. In the right-hand side example,
however, the reconstruction impedance can be calculated as R1 +R2. However,
since the output voltage is connected to an ideal voltage source, that will fix a
certain output voltage regardless of the following resistive load and therefore of
the current needed, we can say that the output voltage will be independent from
this reconstruction impedance and therefore neglect it. As a second rule, we can
say that points connected to ideal voltage sources are good points for breaking
the loop, since the effect of the reconstructed impedance to those points will be
negligible. Last, we can note that we can assume as a test signal both a voltage
or a current and the result, namely the gain loop, will not change.
Once we know the loop gain, we can easily calculate the closed-loop gain for
that network as:

G =
Vo
Vi

=
Gid

1− 1
Gloop

=
R1+R2

R1

1 + R1+R2

AR1

=
A

1 + AR1

R1+R2

=
Gol

1−Gloop

where we have assumed the open-loop gain Gol, for this circuit, to be equal to
the gain of the operation amplifier A. We can then note that this result can
be computed (and rearranged in this form) also by directly solving the network
connecting the input Vi to the output Vo. However, this is not always easy, so it
is generally better to study a network through the feedback theory; the willing
student can try to retrieve the previous result from a direct inspection of the
network.
Another, important observation that we can make is that if we consider a non-
inverting amplifier and we set the input voltage to ground Vi = 0 we obtain
exactly the same network of an inverting amplifier whose input is set to ground.
This means that, for both networks, we will obtain the same loop gain Gloop.
This leads to another important property: since the input is set at zero, the loop
gain does not depend neither on the breaking point nor on the position of the
input.

1.10.2 Open-loop gain

Figure 1.59: Calculation of the open-loop gain Gol for a general network.

We can now study the open-loop gain Gol of a certain network. The general
case is represented in Figure 1.59. To calculate it, we break the feedback network
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(in this case, just before the feedback element F ) and we feed it with a zero-
signal, while a test signal Stest is applied to the input of the network. Solving
this network, we obtain that the output will be:

Sout = GolStest.

Figure 1.60: Calculation of the open-loop gain Gol for a non-inverting amplifier.

To study the open-loop gain of a non-inverting amplifier, the first thing
we need to do is to identify the feedback network. We can immediately observe
that it is the network connecting the output to the inverting pin of the operation
amplifier through the two resistances R1 and R2, since it is not directly related
to the input (that is connected to the positive pin). We can therefore cut this
network as in Figure 1.60 and ground it. This will make the negative pin of the
operation amplifier to be grounded and, applying a test signal to the input, we
obtain that the output will be:

Vo = A(V + − V −) = A(VT − 0) = AVT

thus giving an open-loop gain equal to:

Gol =
Vo
VT

= A

that is exactly what we have previously assumed for this kind of circuit. It is
important to note that also in this case we should have added a reconstructed
impedance to the output of the operation amplifier but, since that node is
connected to an ideal voltage source, this reconstructed impedance has been
neglected.

The situation however is different if we have a non-zero output impedance
Ro of the operation amplifier, as shown in Figure 1.61: in this case, in fact,
the impedance reconstruction is crucial. In this case, in fact, the output pin is
neither a point of infinite impedance nor it is directly connected to an ideal
voltage source (due to the presence of this resistance). Analysing the network,
since the output impedance is the series between R1 and R2, from a voltage
partition we can then write:

V − = 0, Vd = VT ⇒ Vo = AVd
R1 +R2

R1 +R2 +Ro
= A

R1 +R2

R1 +R2 +Ro
VT = GolVT
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Figure 1.61: Calculation of the open-loop gain Gol for a non-inverting amplifier:
the presence of an output resistance makes the reconstructed impedance non-
negligible.

thus obtaining the following open-loop gain25:

Gol = A
R1 +R2

R1 +R2 +Ro
.

It is important to note that if the output resistance tends to the ideal case (thus
being a short-circuit) also the open-loop gain will tend to its ideal value:

Ro → 0 ⇒ Gol → A.

We can observe that, in this case, breaking the loop means that we have a
zero-signal at the inverting pin of the operation amplifier. Therefore, from the
topology of the network, an alternative breaking point is just before the neg-
ative pin of the operation amplifier this point will not need any impedance
reconstruction and it will lead to the previous, correct result.

Figure 1.62: Calculation of the open-loop gain Gol for an inverting amplifier.

A more complex case is the inverting amplifier, that is represented in Fig-
ure 1.62. In this network, it is more difficult to distinguish between input line
and feedback line and, for example, cutting just before the inverting pin of the
operation amplifier will remove both the input and the feedback signal. The

25The willing student is asked to find the loop gain Gloop for this kind of network.
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best breaking point, in this case, is between the output voltage and the feed-
back resistor R2 where, as we have said many times before, it is possible to
neglect the reconstructed impedance since the output is connected to an ideal
voltage source. Since the input impedance of the operation amplifier is infinite
(again, remove one ideal characteristic at a time) we can write through a voltage
partition:

V − = VT
R2

R1 +R2
→ Vo = −A R2

R1 +R2
VT

thus obtaining the following open-loop gain:

Gol =
Vo
VT

= −A R2

R1 +R2

that is different from the one of the non-inverting amplifier. We can observe
that this is consistent with the overall gain G that we expect from this network:

G =
Gid

1− 1
Gloop

=
−R2

R1

1 + R1+R2

AR1

=
− AR2

R1+R2

1 + AR1

R1+R2

=

=
Gol

1−Gloop
.

Remember that, in this expression, the crucial quantities are the ideal gain Gid,
that gives a first approximation of the behaviour of the circuit, and the loop
gain Gloop, that is a key property of the feedback system and must always be
computed. Also the open-loop gain Gol, then, can be computed, even though
in general it is not strictly necessary, if we already have the ideal and the loop
gain.
Also in the inverting case, then, the presence of a non-zero output resistance
Ro inside the operation amplifier will make the calculation of the reconstructed
impedance crucial. The willing student is invited to calculate how the open-loop
gain is affected by this resistance.
As a final remark, we can stress the take-home messages:

• always remember to reconstruct the impedance when dealing with non-
ideal cases;

• the open-loop gain can be calculated as:

Gol = −GloopGid

whereas the other gain terms are related one with the other as:

Gloop = −GolF, Gid =
1

F
, Gloop = −Gol

Gid

and therefore we only need two of these three gain terms to determine the
other one;

• the closed-loop gain may contain an additional term, that is called direct
gain or feed-through gain, due to the direct transfer of the input through
the feedback network, even though this term is usually small and negligi-
ble.
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Figure 1.63: Calculation of the direct gain Gdir for a general network.

1.10.3 Direct gain

As we have defined it at the end of the previous section, the direct gain is the
gain connected to a direct transfer of the input signal to the output one through
the feedback network. For a general network, represented in Figure 1.63, we can
assume to have directional elements inside the feedback network and cutting the
input of the open-loop block and setting its signal to zero, due to the presence
of these directional elements we will not have any transfer from the input to the
output through the feedback networks. In real devices, however, the feedback
network has not a preferred direction, being made of reciprocal components,
therefore it is possible to have such a signal transfer. Therefore, we can compute
this direct transfer from the input through the output via the feedback network
by cutting the open-loop network at its input or at its output.

Figure 1.64: Calculation of the direct gain Gdir for a non-inverting (on the left)
and an inverting (on the right) amplifier.

We can now investigate the direct gain, both for an inverting and a non-
inverting amplifier, in the case of an ideal operation amplifier as shown in Figure
1.64. For the non-inverting amplifier, the resistors R1 and R2 are clearly part of
the feedback loop and not of the open-loop gain, therefore this circuit is easier.
For the inverting amplifier, things are more complicated since R1 and R2 belong
both to the open-loop gain and to the feedback. In both cases, to cut the open-
loop network, since we know that the only element that for sure belongs only
to the open-loop network is the operation amplifier, we can set the ideal output
voltage of the operation amplifier at ground. This will make the output voltage
to be zero and, therefore, we obtain the predicted value for the direct gain:

Gdir = 0
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in this ideal case. In real cases, however, it is not zero, but often it is so small
that it can neglected.

Figure 1.65: Calculation of the direct gain Gdir for an inverting amplifier with
non-zero output impedance.

We can now calculate the direct gain for an inverting amplifier if we assume
to be dealing with an operation amplifier with finite output resistance Ro. In
this case, to disconnect the open-loop gain means, as in the previous one, that
the ideal voltage source at the output is replaced by a short-circuit connected
to the output resistance Ro:

A = 0.

In this case, since the output resistance is different from zero, we expect to have
a direct gain that is different from zero and, by writing a voltage partition we
can write:

Vo = VT
Ro

Ro +R1 +R2
⇒ Gdir =

Vo
VT

=
Ro

Ro +R1 +R2
.

From this example, we can infer26 that the overall gain of the network can be
written as:

G =
Gol +Gdir
1−Gloop

.

In general, since the open-loop gain Gol contains the gain of the operation
amplifier A, that is a very large quantity, while the direct gain Gdir, from the
expression obtained in this example, is a small quantity (in particular, lower
than one), we can neglect the direct gain:

Gdir � Gol ⇒ G ' Gol
1−Gloop

unless we are working at very high frequencies, where the open-loop gain drops.
Moreover, it is important to note that solving by direct inspection the network
we obtain an overall gain that contains, for free, also the contribution of the
direct gain.

26This is not a rigorous demonstration, it is just an observation based on this example.
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1.10.4 Input and output impedances

We can now discuss the effects, on the feedback system, of the presence of input
and output impedances. As before, we will start making some examples and
then we will somehow infer from them the general formula.

Figure 1.66: Non-inverting amplifier with a differential input impedance.

First, we can consider a non-inverting amplifier with a finite differential
input impedance27, represented in Figure 1.66. In an ideal case, the gain A of
the operation amplifier is infinite, therefore it will make the two input pins to
be equal and thus the voltage drop Vd across the differential resistance will be
zero:

A→∞ ⇒ V + = V − ⇒ Vd = 0.

This means that, in ideal cases, the feedback not only stabilizes the gain but also
improves the input impedance of the operation amplifier, leading it to be equal
to the one we would have had in an ideal case, reducing the effect connected to
the presence of the finite input impedance.
However, if the gain is finite, under the assumption of having a large differential
impedance:

Rd � R1, R2

we can write the output voltage (neglecting the direct gain) as:

Vo = GVT =
Gid

1− 1
Gloop

=
R1 +R2

R1
· VT

1− 1
Gloop

and this allows us to write:

V − ' Vo ·
R1

R1 +R2
' VT

1− 1
Gloop

=
Gloop

Gloop − 1
VT

27In general, we neglect common mode impedances since:

Rc � Rd

and we neglect also differential capacities Cd.



62 CHAPTER 1. OPERATION AMPLIFIER

where we have considered that the voltage of the inverting pin V − is determined
exclusively by the current flowing through R1 and R2 (from which the voltage
partition) under the assumption of very small differential resistance. This allows
us to calculate the test current IT that will flow through the pins of the operation
amplifier:

IT =
V + − V −

Rd
=
VT − V −

Rd
' VT
Rd

[
1− Gloop

Gloop − 1

]
' VT
Rd
· −1

Gloop − 1
=

=
VT

Rd(1−Gloop)

and from this we get the input impedance of this feedback network:

Zin =
VT
IT

= Rd (1−Gloop) .

We can observe that, if the loop gain Gloop is equal to zero, therefore if the loop
is open, the input impedance will be equal to the differential resistance Rd, that
therefore is called the open-loop input impedance Zol. The input impedance,
therefore, is varied with respect to its open-loop value of a quantity that depends
on Gloop, that is a key parameter of the feedback system:

Zin = Zol(1−Gloop).

In an ideal case, as the one we have discussed before, if the loop gain tends to
infinity also the input impedance tends to infinity, as in an ideal case, regardless
of the value of the open-loop impedance; this is consistent with what we have
discussed before.

Figure 1.67: Non-inverting amplifier with an output impedance.

For the same non-inverting amplifier, is then possible to study the effect of a
non-zero output impedance as in Figure 1.67. Also in this case, we can assume
to not have any signal at the input and to apply a test signal at the output.
This is a general procedure: assuming a load at the output, we can disconnect
it from the input and observe the circuit from the perspective of the output
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voltage Vo, disconnecting the load and calculating the output impedance across
the load (that can be connected to ground or to another, different voltage). In
this case, we will assume the output resistance Ro to be small with respect both
to R1 and R2:

Ro � R1, R2.

Under this assumption, the test current IT at the output will flow mainly
through Ro, while the current flowing through R1 and R2 will be much smaller.
From this, we can write:

Vo = VT , RoIT ' VT −A(V + − V −) = VT +AV −

where we have that:

V − = VT ·
R1

R1 +R2
.

Therefore, the current:

IT '
VT +AV −

Ro
=
VT
Ro

(
1 +A

R1

R1 +R2

)
' VT
Ro

(1−Gloop)

where we have assumed:

−Gloop = A
R1

R1 +R2
.

This allows us to write the output impedance as:

Zout =
VT
IT
' Ro

1−Gloop
=

Zol
1−Gloop

and again we can observe that the presence of a feedback modifies the output
impedance. Moreover, since Ro is the output impedance when the loop gain
is equal to zero, thus for an open-loop condition, we can define an open-loop
output impedance Zol. In an ideal case, the loop gain tends to be infinite and,
therefore, the output impedance tends to zero:

Gloop →∞ ⇒ Zout → 0

as in the case of an ideal operation amplifier.
We are now able to generalize this kind of reasoning for any given network. We
only need to follow a procedure:

1. Compute the input Zin or output Zout impedance in the ideal case. In
general, this is an easy task and, regardless of the fact that we are consid-
ering an input or an output impedance, we will obtain zero or an infinite
value. Depending on what we have found as an ideal value, we can then
add the effect of the loop gain.

2. Choose between the two forms:

• if the ideal value is infinite:

Zideal →∞ ⇒ Z = Zol (1−Gloop) ;
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• if the ideal value is zero:

Zideal = 0 ⇒ Z =
Zol

1−Gloop
.

This allows us to be consistent with the fact that, in the ideal case, when
the loop gain tends to infinite, we need to find the value calculated at the
previous point.

3. Compute the missing terms, in particular the open-loop impedance Zol
and the loop gain Gloop.

Considering again the example represented in Figure 1.66 at page 1.66, we can
observe that if we set the loop gain equal to zero by imposing A = 0, we are
actually grounding the output and, therefore, the open-loop input impedance
is:

Zol = Rd +
R1R2

R1 +R2
.

In the ideal case, since we are dealing with an input impedance, it will be infinite,
therefore at the end we can write:

Z = Zol (1−Gloop)

where Zol is the value we have just calculated and where Gloop is the loop gain
calculated considering also the presence of the differential resistance Rd.
In the example in Figure 1.67 at page 62, we can again impose the open-loop
condition as A = 0, thus obtaining:

Zol =
Ro(R1 +R2)

Ro +R1 +R2
.

Since the ideal resistance in this case is zero:

Zid = 0

the overall output resistance will then be:

Z =
Zol

1−Gloop

where, again, the loop gain Gloop is calculated taking into account the presence
of the output resistance Ro.
It is important to remember that the feedback theory we are developing is just a
way of studying this kind of networks. The same results (maybe a little messed
up) can be obtained directly solving the network, even though this first method
is usually simpler and clearer.
An alternative method is represented by Blackman’s impedance formula:

Z = Zol ·
1−Gloop|sc
1−Gloop|oc

where oc stands for open circuit and sc for short-circuit. The open-loop impe-
dance can be calculated as in the previous case, while for sc we need to calculate
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Figure 1.68: Calculation of the input impedance of an inverting amplifier.

the loop gain when the pin considered for the calculation of the impedance is
short-circuited to ground and for oc it is left as an open circuit.

As a last example, we can study the case of an inverting amplifier, repre-
sented in Figure 1.68. In this case, we can calculate the ideal input impedance
as:

V + = V − ⇒ Zid = R1

and we can observe that it is nor zero neither an infinite value. This is due to
the fact that attaching an element in series or in parallel to the real impedance
of the network, we will observe as an ideal impedance the series or the parallel
of this element and of the actual ideal impedance. In this case, we can imme-
diately observe that R1 is in series with the actual input impedance, so we can
disconnect it and apply the previous procedure to the remaining part, assuming
an ideal input impedance equal to zero:

Z ′id = 0.

This gives:

Z ′ =
Zol

1−Gloop

where the open-loop impedance Zol is calculated as usual, thus obtaining an
overall input impedance of:

Z = R1 +
Zol

1−Gloop
.

1.11 Frequency behaviour, system stability and
pole compensation

1.11.1 Frequency response of feedback amplifiers

In the frequency domain, all the properties that we have seen to be valid in the
previous section will hold as functions of the incoming frequency. In the case of
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the loop gain, for example, in the Laplace domain, defining the Laplace operator
s, we can obtain:

Gloop(s) = −Gol(s)
Gid(s)

that in a magnitude diagram, where the scale is in decibels28, gives:

|Gloop(s)|dB = |Gol(s)|dB − |Gid(s)|dB .

In the same way, we can define the gain of a given feedback network as:

G(s) =
Gol(s)

1−Gloop(s)
=

Gid(s)

1− 1
Gloop(s)

and also in this case we can distinguish between a strong loop condition and a
weak loop condition: {

Gloop � 1 ⇒ G ' Gid
Gloop � 1 ⇒ G ' Gol

.

The main quantity, therefore, is again the loop gain Gloop(s), that now will be
dependent on the frequency. These quantities can then be represented in Bode
plots as in Figure 1.69.

Figure 1.69: Example of Bode plot of the magnitude for the open-loop gain and
for the ideal one. From them, it is then determined the loop gain and the gain
of the network.

In this Figure, we have plot a possible frequency behaviour of the open-
loop gain Gol(s) and of the ideal gain Gid(s). From the previous relationship,
then, we can observe that, since the unit of measurement of the vertical axis
is the decibel, we can determine from the graph the loop gain Gloop(s) at each
frequency just by calculating the difference between the open-loop gain and the
ideal gain at that frequency. It is important to note that in the point where the
open-loop gain and the ideal gain are identical, the value in decibels of the loop
gain is zero, thus being one in usual units:

|Gol|dB = |Gid|dB ⇒ |Gloop|dB = 0 ⇒ Gloop = 1.

28We remind that:
Gloop(s)

∣∣
dB = 10 log10(Gloop(s)).
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Beyond that point, then, the loop gain will be lower than one. For the closed
loop gain, therefore, we can define observe the following asymptotic behaviour:

G '

{
Gid, for Gloop � 1

Gol, for Gloop � 1

as in Figure 1.69 and, as a rule of thumb, we can extend it in order to have a
piecewise continuous behaviour:

G =

{
Gid, for Gloop > 1

Gol, for Gloop < 1
.

This means that the gain of the network will always be equal to the minimum
value between the ideal and the loop gain:

G ' min(Gid, Gloop).

Obviously, these are called asymptotic Bode plots and, drawing them, we are
committing some errors due to some approximations.

Figure 1.70: On the left, Bode plot of the magnitude of the involved gains; on
the right, network that we are considering.

The first application of these plots is to a single-pole amplifier, represented
in the right-hand side of Figure 1.70. In fact, it is important to remember that
the vast majority of the operation amplifiers will have the following transfer
function between input and output:

Vo = A(V + − V −), A(s) =
A0

1 + sτ
.

Therefore, calculating the open-loop gain, we can cut the loop at the output (as
we have done in the previous section), obtaining:

Gol = A(s)
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that is represented in Figure 1.70. The ideal gain Gid, on the other hand, has
been studied many times and it is constant and independent from the frequency.
This allows us to study the loop gain Gloop(s) and to draw the gain G(s). The
crossing point at which the gain G(s) pass from being equal to the ideal gain to
being equal to the open-loop gain is the frequency represented in Figure as fT .
Since we know that the frequency at which the open-loop gain crosses the hor-
izontal axis is called gain-bandwidth product GBWP and it is a characteristic
of our device:

A0

2πτ
= GBWP

we can write the frequency fT in the Figure as29:

fT =
GBWP

Gid

either from a direct calculation involving the expression of the open-loop gain
and the value of the ideal gain or by studying the graph. From the expression
of the loop gain of the network considered:

Gloop =
A(s)R1

R1 +R2
=

A0

1 + sτ
· R1

R1 +R2

we can write the gain of the closed-loop network:

G =
Gid

1− 1
Gloop(s)

=
Gid

1 + R1+R2

A(s)R1

and in the denominator we will have a pole determined by the frequency be-
haviour of the operation amplifier. This pole can be found by solving the poly-
nomial at the denominator:

(R1 +R2)(1 + sτ)

A0R1
= −1

thus giving:

s = −1

τ

(
1 +

A0R1

R1 +R2

)
= −1

τ
(1−Gloop(0))

and the frequency of the pole is:

fp =
1

2πτ

(
1 +

A0R1

R1 +R2

)
=

1

2πτ
(1−Gloop(0)) .

It is possible to note that 1/(2πτ) is the frequency of the pole of the open-loop
network, when:

Gloop(0)→ 0

and therefore it is also called open-loop pole.
We can observe that, without any feedback, the gain is just the open-loop gain

29Always remember that when we are dealing with a line with slope −n · 20 dB/dec the
gain A1 at a certain frequency f1 will become, at another frequency f2 along the same line,
such that the following relationship is satisfied:

A1 · fn1 = A2 · fn2 .
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and the only pole present is the open-loop one. The presence of the feedback
network, then, will change the position of this pole, as seen in Figure 1.70, and
therefore also the bandwidth of the network that we are considering; in general,
this is a good property and we will use it. Since we can observe that:

A0R1

R1 +R2
� 1

we can in general write that, for a non-inverting amplifier as the considered one:

fp '
A0

2πτ

R1

R1 +R2
= − 1

2πτ

A0

Gid

and inverting this relationship we obtain:

|fp|
R1 +R2

R1
= |fp|Gid =

A0

2πτ
= GBWP.

This makes clearer the meaning of the gain-bandwidth product: it is a constant
factor that relates the gain and the position of the pole. If the absolute value
of the frequency of the pole increases, then the ideal gain of the network will
diminish, while if the absolute value of the frequency of the pole decreases, the
ideal gain of the bandwidth increases. Since the minimum value of the ideal gain
is one (corresponding to zero decibels), then the maximum bandwidth is given
by GBWP , as we have seen in the Bode diagram in Figure 1.70.
In an inverting configuration, the same relationship will lead to:

|fp|(1 + |Gid|) = GBWP

where the factor multiplying the frequency of the pole is different from the ideal
gain of the network. At the end, therefore, the feedback loop reduces the open-
loop gain by a factor of 1−Gloop(0) and widens the bandwidth of an identical
factor.
However, the fact that the position of a pole in a network is changed depending
on the ideal gain of the network can, in principle, lead to instabilities even if
the open-loop system is stable. We need, therefore, to discuss the stability of a
feedback system.

1.11.2 Stability of feedback amplifiers

Given a generic feedback system as the one represented in Figure 1.71, it is pos-
sible to demonstrate a fundamental properties of feedback systems: the stability
of the closed-loop system only depends on the loop gain Gloop. An alternative
possibility, obviously, is to study directly the gain G of the network but, since we
have this property, it is also possible to demonstrate that the critical condition
for having instability is:

Gloop = 1

or, better:
−Gloop = −1.

This can be done by studying the Nyquist criterion, but this kind of reasoning
is quite complicated and not very useful from our perspective.
The main tool that we will use to study the stability of a feedback system is the
Bode stability criterion (1945). It states that if:
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Figure 1.71: A generic feedback system.

• Gloop(s) has only one pole in the left-hand side plane (therefore, with real
part negative) or in the origin (s = 0);

• there is only one critical frequency f
0 dB where the magnitude of −Gloop

is equal to 0 dB, thus crossing the horizontal axis;

• the phase of the loop gain at that frequency is such that:

∠
(
−Gloop(f0 dB)

)
< 180◦

therefore,we have a positive phase margin;

then the system is stable.
It is important to observe that the previous condition are sufficient for determin-
ing the stability of the system, but they are not necessary: if the hypotheses of
this theorem are not satisfied, we cannot say that the system is unstable. More-
over, this first formulation involves the requirement of having just one crossing
of the horizontal axis.
A second formulation, on the other, sets the requirement of having just one cross
of the 180◦ phase in the phase diagram. This alternative formulation states that
if:

• Gloop(s) has only one pole in the left-hand side plane (therefore, with real
part negative) or in the origin (s = 0);

• there is only one frequency f180◦ where the phase of −Gloop is 180◦ (plus
or minus integer multiples of 360◦);

• at that frequency:
|Gloop(f180◦)| < 1;

then the system is stable.
Considering what we have discussed in the previous section regarding the gain-
bandwidth product, we can immediately observe that a change in the zero-
frequency gain A0 of the operation amplifier can possibly rise or lower the mag-
nitude Bode diagram, thus changing the critical frequency and possibly affecting
the stability property of such a system. The gain margin, defined as:

Gm =
1

|Gloop(f180◦)|
, Gm|dB = − Gloop(f180◦)|dB
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therefore represent how much the gain can change without affecting the stability
property of the system. On the other hand, a fluctuation in the position of a
pole can affect the stability of the system as well. We can therefore define the
phase margin as the maximum variation of the phase that it is possible to face
without loosing the stability property of the system:

φm = 180◦ + ∠
[
−Gloop(f0 dB)

]
.

These parameters are extremely important in real systems, where the transfer
functions are subjected to some tolerances due to the fact that the systems are
realized with real components, significantly different from ideal ones.

Figure 1.72: Simplified version of the Bode criterion.

A simplified version of the Bode criterion can then be adopted when the
real part of every zero and pole is negative. In this case, in fact, every pole will
determine a phase shift of −90◦ and every zero of 90◦, thus making possible
to reconstruct the phase Bode diagram just from the magnitude one. Systems
satisfying this hypothesis are called minimum phase systems. This simplified
Bode criterion, therefore, states that if all the poles and zeros of the transfer
function are in the left-hand side plane, it is possible to infer the stability of a
system from its Bode plot and, in particular:

• if we are cutting the horizontal axis, in the magnitude Bode diagram,
with a slope of −20 dB/dec, the system is stable and the phase margin is
φm ' 90◦;

• if we are cutting the horizontal axis, in the magnitude Bode diagram, with
a slope of −40 dB/dec or more inclined, the system is unstable and the
phase margin will be zero degrees or even negative;

• if the point at which we are cutting the horizontal axis in the magnitude
Bode diagram is exactly a pole where the slope passes from −20 dB/dec
to −40 dB/dec, then the system is stable and the phase margin is approx-
imately 45◦.

These properties can be demonstrated by studying the Bode diagrams associated
to minimum phase systems in these conditions.
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Figure 1.73: On the left, temporal step response of a system for different phase
margins; on the right, overshoot on the step response as a function of the phase
margin.

We can then study the step response of a system and observe that the phase
margin influences the overshoot in this step response, even though the system is
stable. Therefore, what is an acceptable value for the phase margin? It depends
on the overshoot that our system can face. Another possible problem is the
settling time, that can be influenced by the phase margin. In general, in our
cases, we will be satisfied with a phase margin of:

φm ' 45◦.

However, in practical application this may not be enough.
At this point, a problem may arise: what can we done if the phase margin of a
certain system is not enough? This problem introduces us to the next topic, the
frequency compensation, through a suitable tailoring of the loop gain Gloop.

1.11.3 Compensation

As we have said at the end of the previous section, the frequency compensation
of an operation amplifier is the tailoring of the loop gain Gloop(s) in order to
improve the circuit stability. Most of the operation amplifiers at our disposal are
in general “internally compensated” in order to be easier to use with a resistive
feedback. This means that the manufacturer modifies them in order to have just
a single pole when the magnitude of the gain is above 0 dB. However, when we
have frequency dependent feedback systems, we need to check the stability of
the system and, eventually, compensate it to obtain a stable system.

A first example of compensation technique is the so called dominant pole
compensation. Consider, for example, the original magnitude Bode diagram of
the loop gain represented as a dashed line in Figure 1.74. This gain is cutting
the 0 dB axis with a very high slope, thus the phase margin of this system will
be very low or even negative. To solve this problem, it is possible to introduce
an additional pole, whose frequency is indicated with a cross on the frequency
axis in Figure, at a very low frequency. This additional pole, being at very
low frequency, will be the first pole of the loop gain function and, therefore,
will make the magnitude diagram of the loop gain cross the 0 dB axis with a
better slope, thus increasing the phase margin that, in the example in Figure,
will be about 45◦. This kind of compensation technique is generally adopted in
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Figure 1.74: An example of dominant pole compensation.

every kind of “internally compensated” operation amplifier. In fact, every real
operation amplifier will have a lot of poles30 and to compensate them, we can
introduce a capacitor, represented in Figure 1.43 at page 44, that will control
the slew rate and that will be at such a low frequency that we can assume,
for this kind of device, a single-pole transfer function31. However, this is not
the only possibility: there exist also uncompensated operation amplifiers, where
poles are not compensated, that will be described, for example, by a transfer
function with two poles.

Figure 1.75: Example of Bode diagram of the magnitude of the gains for an
uncompensated operation amplifier.

In Figure 1.75 it is represented an example of Bode diagram of the gains for
an uncompensated operation amplifier. We can immediately note that, when
the ideal gain is represented by the solid line in Figure, the gain G will probably
be such that the system is unstable, while for a lower ideal gain, described by
the dashed line, the loop gain is higher and the gain G will probably describe

30In general, every capacity of a certain system will add a pole and, in an operation amplifier,
we will have a lot of transistors and capacitors, each one of them adding one or more poles.

31In fact, every other pole will play a role only at high enough frequency, where the gain is
well lower than the 0 dB axis.
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a stable system. In general, uncompensated operation amplifiers can achieve
better performances, but they must be carefully tailored on the specific circuit.
We will almost always deal with compensated operation amplifiers, due to the
higher difficulties involved in the design of circuits for uncompensated operation
amplifiers.

Figure 1.76: Example of Bode diagram of the magnitude for a pole-zero com-
pensation.

A different kind of compensation technique is the so called pole-zero com-
pensation, represented in Figure 1.76. In this kind of technique, the additional,
low-frequency pole (represented with a cross in Figure) is not enough to obtain
a stable system. Therefore, we need to include an additional zero (represented
with a circle in Figure) at exactly the same frequency of one of the poles of the
original loop gain function. In the given example, the additional zero cancels out
a pole and therefore allows the loop gain function to cut the horizontal axis with
a slope that ensure an high enough phase margin (while this was not possible
without the additional zero). To add a zero in the loop gain function, the only
possibility is to act on the feedback network.
From the previous descriptions, it should be intuitive that there is not a defini-
tive path or technique to obtain a stable system: every solution is different and
it has its own strong and weak points.

Figure 1.77: Inverting amplifier with an input capacitance and the associated
Bode diagram for the magnitude of the loop gain.

A first example of system in need of pole compensation is an inverting am-
plifier with an input capacitance. Since we want to calculate the loop gain of
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this network, we can ground the input, cut the loop between the resistance R2

and the output of the operation amplifier and add, in that point, a test voltage
source. In general, we have that at the input of the operation amplifier there
is only a differential resistance Rd that is much higher than R1 and R2 and,
therefore, it can be neglected. At high frequencies, however, a small input ca-
pacitance inside the operation amplifier, indicated with Ci in Figure, becomes
important. Observing that, in this network, the resistance R1 and the capacity
Ci are in parallel (both being between V − and V + = 0, we can replace them
with a complex impedance Z connected to the two input pins of the operation
amplifier. This complex impedance will be:

Z =
R1

R1 + sCiR1

therefore the output voltage will be:

Vo = −A(s)V − = −A(s)
Z

Z +R2
VT

thus giving the following loop gain:

Gloop = −A(s)
Z

Z +R2
= −A(s)

R1

R1 +R2
· 1

1 + sCi(R1‖R2)
.

We can therefore observe that every time we add a reactive element (in general
capacitors and inductors, even though we will deal only with capacitors) to a
network, we are also introducing a new pole, where the time constant will be:

τ = CReq

where C is the capacity introduced and Req is the equivalent resistance seen
across the capacitor (in this case, the parallel between R1 and R2).

Figure 1.78: Inverting amplifier with an input capacitance and a compensation
capacitance.

The previous circuit, since the slope of the loop gain at the crossover fre-
quency is −2, has some issues regarding stability. Therefore, we need to add a
compensation capacitance, as in Figure 1.78. In fact, since every capacitor in
general generates a pole in the transfer function, without the additional capaci-
tance C2 we have two poles (one given from the input capacitance Ci, the other
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coming from the operation amplifier) and the system is probably unstable. The
two poles are placed in:

s = −1

τ
, s = − 1

Ci(R1‖R2)
.

Therefore, neglecting the presence of C2, we obtain the dashed behaviour repre-
sented in Figure 1.79. The phase margin, in this case, is clearly lower than 45◦,
therefore we have a stability issue.

Figure 1.79: Bode diagram of the magnitude of the loop transfer function with
or without compensation capacitance.

To compensate the stability problem of the previous circuit, we can add a
capacitor C2 as represented in Figure 1.78 and we will find out that this new
capacitor will a zero to the transfer function. Defining the following two complex
impedances:

Z1 = Ci‖R1, Z2 = C2‖R2

we therefore obtain the following loop gain:

Gloop = −A(s)
Z1

Z1 + Z2
= −A(s)

R1

1+sCiR1

R1

1+sCiR1
+ R2

1+sC2R2

=

= −A(s)
R1

R1 +R2

1 + sC2R2

1 + s(Ci + C2) · (R1‖R2)
.

Therefore, we have clearly added a zero at the following frequency:

fz =
1

2πC2R2

while the poles will be at the following frequencies:

fp1 =
1

2πτ
, fp2 =

1

2π(Ci + C2)(R1‖R2)

thus it is possible to note that the zero will be at a frequency higher than the
one of the two poles:

fz > fp2 > fp1.

Adding this zero, properly selecting the compensation capacitance C2 it is pos-
sible to place it exactly at the crossover frequency, changing the slope from −2
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to −1 and increasing the phase margin. Note that now we have two different
capacitors Ci and C2 but we do not have two different poles (one from each
of them, apart from the one of the operation amplifier): this is due to the fact
that the two capacitors are not independent. In electronics, two elements are
said to be independent when they are neither in parallel nor in series. This can
be clearly observed by calculating the equivalent resistance of Ci or C2 when
calculating the loop gain: both, in fact, will have one end connected to ground
and the other connected to the inverting pin of the operation amplifier.
The additional capacitance, that gives the stability of the circuit, however, has
also a drawback. In fact, the capacitance C2 modifies the closed-loop gain, re-
ducing the bandwidth of the circuit, that now is limited by the frequency of the
zero fz. In general, in fact, we have that the resistance R2 is higher than R1 in
order to have an amplifier. In particular, we can observe that:

R1 � R2 ⇒ R1‖R2 ' R1

while, in general, compensation capacitance are extremely low:

Ci � C2.

This gives the fact that:
fp2 < fz

because the frequency of the pole is almost unchanged with respect to the un-
compensated case, while the zero will clearly be at an higher frequency. The
idea, in particular, is to choose a compensation capacitance C2 small enough to
have the frequency of the zero fz in a place suitable for giving an effective com-
pensation (otherwise, it will be beyond the crossover frequency). In the design
of a circuit, therefore, we are tailoring the position of the zero fz depending on
the desired phase margin. We are, somehow, trading off the stability of the cir-
cuit against its bandwidth and this can be studied by calculating the ideal gain
of the compensated circuit represented in Figure 1.78. Considering for example
a signal Vi applied to the first resistance R1, due to the effect of the negative
feedback, considering an ideal operation amplifier, we will have that:

V + = V − = 0

therefore the presence of the input capacitance Ci can be neglected in the cal-
culation of the ideal gain. Defining the following complex impedance:

Z2 = C2‖R2

we obtain the following ideal gain:

Gid = −Z2

R1
= −R2

R1
· 1

1 + sC2R2

and this clearly show that the ideal gain, now, has a certain bandwidth that is
limited by the frequency of the zero of the loop transfer function. We are thus
trading off between the stability (in particular, the phase margin) of the loop
gain (and thus of the whole closed-loop system) and the bandwidth of the ideal
gain.
A possible, alternative choice is to have:

C2R2 = CiR1 ⇒ fp2 = fz
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obtaining what is generally called a pole-zero cancellation. However, this is usu-
ally difficult to obtain, since in real devices the input capacitance Ci is never
constant32.
Last, in differential amplifiers another possibility is to use a symmetric compen-
sation. From an ideal point of view, in fact, anything that is placed between
the positive and the negative input pins of the operation amplifier should not
affect the ideal gain of the device, since the voltage drop across these elements is
identically equal to zero (when the loop is closed and the operation amplifier is
considered as an ideal element). This observation leads us to put compensating
elements between these two nodes, thus adding a zero33 at a frequency higher
than the one of the pole given by the capacity. This kind of circuit is represented
in Figure 1.80 and it is called lag network.

Figure 1.80: A lag network.

Studying the loop gain of this network, it is possible to calculate that:

Gloop = −A(s)
R1

R1 +R2
· 1 + sCCRC

1 + sCC(RC +R1‖R2)

after the definition of the complex impedance Z as the series between the re-
sistance RC and the capacitance CC . We can observe that, from the previous
reasoning, this network will not affect the ideal gain Gid, but it will possibly
degrade the input impedance Zin of the operation amplifier when we are dealing
with non-inverting amplifiers. We can define a network in which:

fp < fz

a lag network, since we will first loose a certain amount of phase that will be
the gained again later. On the contrary, if we have a network in which:

fz < fp

it will be called a lead network, since we will first gain some phase and then we
will loose it.
Another circuit that whose compensation can be studied is the differentiator,
first analysed at page 25, to which we can add an input capacitance Ci as in
Figure 1.81.

32We have seen in a previous section that the parameters of a real operation amplifier
changes significantly depending on several variables.

33In general, there is not any clever rule for finding out the position of a zero by studying
the topology of a network. The only way of finding it is to explicitly calculate the loop gain
of the whole network.
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Figure 1.81: A differentiator with an input capacitance.

As we have seen in the related exercise, this circuit has stability problems
also without the addition of the capacity Ci. Adding this input capacity, we can
see that it is in parallel with the capacitance C, therefore they will give just one
pole of equivalent capacity C + Ci. Calculating the loop gain of this network,
we obtain:

Gloop = −A(s)
1

1 + sR(C + Ci)

and, in general, the input capacitance is much smaller than the other one:

Ci � C

and therefore we can neglect it.
A first possibility for compensating the circuit is to add a resistor RC in parallel
to Ci, thus connected to the positive and negative input pins of the operation
amplifier. Neglecting, then, for the sake of simplicity, the small input capacitance
it is possible to calculate the loop gain of this compensated circuit34, obtaining:

Gloop = − A0

1 + sτ
· 1

1 + sC(RC‖R)
· RC
R+RC

.

Adding a very small compensating capacitance:

RC � R

we are thus decreasing the gain at low frequency, thus lowering the whole Bode
diagram of the magnitude (that however will maintain the same shape) with
respect to the zero decibels axis. At a certain point, the gain will be so low
that the crossover frequency will be placed between the pole coming from the
operation amplifier and the pole coming from the capacitors, thus crossing the
zero decibels axis with a slope of −1 and thus giving a stable system. This kind
of compensation, obviously, works if we do not have any alternative option,
due to its major drawback. In this way, in fact, we are loosing loop gain and,
therefore, accuracy on the output, thus increasing significantly the error.

An alternative possibility for compensating the circuit is to add a resistor
RC is series with the capacitor C, as in Figure 1.83. Again, we could study
the loop gain of this circuit and then observe the position of the zeros and
poles to obtain the phase margin: this kind of analysis is left to the student.
A possible, alternative analysis of the circuit is based on the approximated

34Every time that a circuit is not drawn, it is left as an exercise to the willing student.
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|Gloop|

log(f)

RC

Figure 1.82: Variation of the magnitude of the loop gain depending on the value
of the compensation capacitance.

Figure 1.83: A compensated differentiator and its analysis in different frequency
regimes.

evaluation of the poles. First of all, we can observe that the capacitors C and
Ci are neither in parallel nor in series, thus being independent, and therefore
we expect to have two poles (plus the one coming from the operation amplifier).
To compute the position of the pole associated to Ci, we can calculate the
equivalent resistance of the network as seen from this capacitor. However, we
can immediately observe that, in principle, this will not be a resistance but it will
be a complex impedance, varying with the frequency and containing the effect
of the presence of the other capacitor C. The same can be observed by trying
to calculate the equivalent resistance from the point of view of the C capacitor,
that will contain the effects given from the capacity Ci. The effects of the two
capacitors, therefore, are mixed up: by directly evaluating the loop gain of this
network, we would have obtained a second order equation at the denominator
of the transfer function, thus complicating the solution of this circuit. However,
we can observe that in general the input capacitance is much smaller than the
other one:

Ci � C

and therefore we can assume the two associated poles to be well separated:

fp1 =
1

2πCReq,C
� fp2 =

1

2πCiReq,Ci

if the two equivalent resistors Req,C and Req,Ci are not too different35. If this

35This happens seldom, but it may happen, giving two poles one near to the other and
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holds, we can evaluate the low-frequency pole fp1, related to the capacitor C,
observing that the capacitor Ci will be well below the frequency of its pole and,
therefore, it can be approximated with an open circuit (as in the bottom left-
hand side of Figure 1.83). This allows us to evaluate the equivalent resistance of
the capacitor C as usual. In the same way, to find the high-frequency pole fp2,
that will be related to the input capacitance Ci, we can observe that the capaci-
tor C will be operating well above its associated frequency and, therefore, it can
be approximated by a short-circuit (as represented in the bottom right-hand
side of Figure 1.83). This allows us to evaluate also the equivalent resistance of
the capacitor Ci. Performing this approximate evaluation, we obtain that:

fp1 '
1

2πC(RC +R)
, fp2 '

1

2πCi(RC‖R)

while from a complete, algebraic solution of the network we can obtain the
frequency of the zero:

fz =
1

2πCRC
.

Moreover, we must consider the presence of the pole given by the operation
amplifier. In general, the second pole fp2 is at high frequency and it can be
neglected. In fact, the capacitance Ci is small, while the compensating resistance
is much smaller than the feedback one:

RC � R ⇒ RC‖R ' RC

thus begin in general placed in a position where the magnitude of the loop
transfer function is well below the zero decibels. For the same reason, we can
say that we are using a lag network for compensating this circuit, since:

RC � R ⇒ fz =
1

2πCRC
> fp1 '

1

2πCR
.

The closed-loop gain bandwidth of the circuit will be then limited by the fre-
quency of the zero:

fz =
1

2πRCC
.

Considering the ideal gain and the fact that, since the loop is closed and the
operation amplifier is an ideal element, the two input pins are at the same
voltage and therefore every element placed between these two nodes can be
neglected36, we can write the ideal gain as:

Gid = − R

RC + 1
sC

=
−sCR

1 + sCRC

obtaining the relationship represented in Figure 5.21 at page 297.

1.11.4 Capacitive load

We can now study what happens when we have an amplifier connected to a
capacitive load CL, as represented in Figure 1.84. This load will determine the

making this argument not valid.
36Since there will not be any voltage drop across these elements.
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Figure 1.84: An amplifier connected to a capacitive load.

presence of an additional pole in the loop gain Gloop that we would like to be at
a frequency higher than the gain-bandwidth product GBWP of a certain factor
(for example 10 ·GBWP ). We can evaluate the frequency of this additional pole
as:

fpL '
1

2πCL[Ro‖(R1 +R2)]

but since we have that the output resistance is generally much smaller than any
other resistance in the circuit:

Ro � R1, R2

we can write it as:

fpL '
1

2πCLRo

and thus it could possibly lead to a significant decrease in the phase margin.
Since the frequency of this pole is inversely proportional to the load capacitance:

fpL ∝
1

CL

we could possibly have problems for large values of the load capacitance. We
can thus calculate a maximum value of the load capacitance associated to our
particular amplifier. Assuming to have a single-pole operation amplifier, we can
observe that the crossover frequency of the loop gain will be, in principle the
gain-bandwidth product GBWP regardless of the initial gain considered.

|Gloop|

log(f)

GBWP

A0

Figure 1.85: Representation of the Bode diagram of the magnitude of the oper-
ation amplifier.
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Therefore, if we want that this pole does not affect the stability of the system
regardless of the value of the gain A0 considered, we want the pole to be placed
at a frequency significantly higher than the gain-bandwidth product:

fpL � GBWP ⇒ CL �
1

2πRoGBWP
.

Considering for example an acceptable margin a factor of ten between the gain-
bandwidth product and the frequency of the pole, we can write the maximum
value of the load capacity as:

CL '
1

2πRoGBWP
.

This is just a quite rough estimate, giving a very stringent condition, and for
high values of the load capacitance we need to compensate their presence.

Figure 1.86: Compensation of a capacitive load.

A first possibility of compensating a capacitive load is to add a resistance
RC between the output of the operation amplifier and the capacitive load, as
shown in Figure 1.86. This will lead us to add a zero and a pole to loop gain of
this network. Evaluating the equivalent resistance of the load capacitance:

RC +Ro‖(R1 +R2) ' RC +Ro

we can write the frequency of the pole as:

fp =
1

2πCL[RC +Ro‖(R1 +R2)]
' 1

2πCL(RC +Ro)

while the zero can be evaluated directly from the loop gain, obtaining:

fz =
1

2πCLRC
.

In general, since the compensation resistance is small:

fz > fp

and by suitably choosing it we can reach the required phase margin and thus
the stability of the network.
A more refined compensation scheme is represented in Figure 1.87. The analysis
of this circuit, finding the positions of the two poles and of the two zeros and the
conditions for having two pole-zero cancellations are left to the willing student.
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Figure 1.87: A more refined compensation scheme of a capacitive load.

1.12 Amplifiers and signals

1.12.1 Single-ended and differential signals

Up to now, we have studied how it is possible to build an amplifier depending
on the characteristics of the operation amplifier at our disposal and on all the
possible problems deriving from the fact that we are dealing with non-ideal
devices. However, how is it possible to apply these amplifiers to the signals
coming from a sensor? In this section and in the next chapter, therefore, we will
mainly deal with what we called the input of the operation amplifier.

Figure 1.88: A single-ended signal.

In general, an input signal is defined as a voltage difference between two
nodes. A possible choice is to have one node connected to the input of the
amplifier (represented with a triangle in Figure 1.88 even though it is not just
an operation amplifier) and the ground. In this case, therefore, at the output of
the amplification stage we will obtain a voltage difference between the output
pin of the amplifier and the ground and this kind of signal is called a single-
ended signal. The peculiarity of these signals, therefore, is that one pin of the
voltage difference is always considered to be at ground. A question, however,
may arise: what is this ground? In fact, the ground potential is defined as a
reference potential, that is arbitrarily chosen to be at:

V = 0

since the only physically meaningful quantities are the voltage differences, not
the voltages themselves. However, in reality, it is impossible to define a unique
ground, since nothing will be a perfect metal, in which every point is set exactly
at the same potential by definition. The ground, therefore, will have a certain,
intrinsic resistivity, thus making any local ground different from any other one.
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It will be, therefore, just a reference voltage of the circuit. This kind of signals,
therefore, will be suitable if and only if the input and the output of the amplifier
are in the same place and they are referring to the same ground. If we consider
remote signals coming to an amplifier that is placed in a different place, the two
grounds (the one of the signal and the one of the amplifier) may be different37

and they may be varying in a very complicated way. These changes in the ground
are represented by the dashed voltage generator in Figure 1.88 and they are then
amplified through the amplifier, possibly representing a source of troubles in our
device. Therefore, this kind of signals have two important drawbacks: they are
sensitive to noise and interferences coming from external electromagnetic fields
and the are sensitive to differences in ground potentials. However, being simple
and cheap, they are still used in non-demanding applications, in which we have
a clear, strong and local signal.

Figure 1.89: A differential signal.

On the other hand, if we are dealing with a differential amplifier, we will
be able to amplify the difference between two input pins. Therefore, we will
not care of the common-mode signal VC , since it will be applied to both pins,
and of the ground fluctuations (that will be common-mode signals too). This
network, in fact, is sensitive only to differential signals. Moreover, most of the
time the interferences will act in the same way on both input pins, since they
are near one to the other, thus cancelling out almost completely their effects.
These signals are called differential signals. In this case, however, we need to
have an high common-mode rejection ratio (CMRR) in order to reject the noise
and the fluctuations of the ground potential. Since this ratio is defined as:

CMRR =
Adm
Acm

where Adm is the differential-mode amplification of the amplifier and Acm is
the common-mode amplification. This is a strong additional requirement, on
the amplifier, with respect to what we had in single-ended signals, but it is
extremely important since in general the differential signal VS is much smaller
than the superimposed common-mode signal VC . The devices needed for dealing
with these signals are in general more expensive (requiring more components
and more complex networks) but they can give rise to higher performances.

1.12.2 Subtractor circuit

A possible amplifier for a differential signal is the subtractor circuit, repre-
sented in Figure 1.90. In general, this circuit has two main drawbacks: the input

37Even of a few volts, thus surely not a negligible quantity.
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Figure 1.90: A subtractor circuit.

impedance of the network is low and asymmetric and, moreover, the common-
mode rejection ratio is limited by the resistive matching.
To compute the common-mode gain of this stage, it is necessary to apply to
both input pins the same, common-mode signal:

V1 = V2 = Vcm.

We can then study the network, that is linear, by exploiting the superposition
principle. First, we can switch off the second input, obtaining:

V2 = 0 → V + = V − = 0

and therefore the output is:

Vo1 = −R4

R3
V1 = −R4

R3
Vcm.

On the other hand, switching off the signal at the first input:

V1 = 0 → V + = V − =
R2

R1 +R2
Vcm

and thus the output is:

Vo2 =
R3 +R4

R3
· R2

R1 +R2
Vcm.

Superimposing these two outputs, we obtain the overall output:

Vo =

[
R3 +R4

R3
· R2

R1 +R2
− R4

R3

]
Vcm.

We can thus write the common-mode amplification factor as:

Acm =
R3 +R4

R3

R2

R1 +R2
− R4

R3
=

R2

R1 +R2

(
1 +

R4

R3
− R4

R3

R1 +R2

R2

)
=

=
R2

R1 +R2

(
1 +
�
��
R4

R3
−
�
��
R4

R3
− R4R1

R2R3

)
=

R2

R1 +R2

(
1− R1R4

R2R3

)
=

=
1

1 + R1

R2

(
1− R1R4

R2R3

)
.
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In order to have a fully differential amplifier, we would like this common-mode
amplification factor to be equal to zero:

Acm = 0 → R1

R2
=
R3

R4
.

However, a problem may arise when trying to impose this condition: resistors,
in fact, are never exactly equal to a certain value, but they are different within a
certain tolerance and certain differences related to external parameters. There-
fore, instead of having a defined value Ri of resistance we will have an average
value R̄i and a certain tolerance ∆Ri such that:

R̄i ±∆Ri = R̄i (1± x)

where:

x =
∆Ri
R̄i

depends on the manufacturing process, the environmental conditions and many
other parameters. Therefore, at the numerator of the common-mode amplifica-
tion factor we will have:

R̄1(1± x)

R̄2(1± x)
· R̄4(1± x)

R̄3(1± x)

and in the worst case it will give:

R̄1(1 + x)

R̄2(1− x)
· R̄4(1 + x)

R̄3(1− x)
= (1 + x)2

(
1

1− x

)2

.

However, in general the relative tolerance x is small38, therefore we can apply
the following series expansion:

1

1− x
' 1 + x

and neglecting second order terms:

(1 + x)2

(
1

1− x

)2

' (1 + x)2(1 + x)2 = (1 + x2 + 2x)2 '

' (1 + 2x)2 ' (1 + 4x+ 4x2) ' 1 + 4x.

Note that the same will happen also in others “worst case” conditions, de-
pending on the choice of the sign of the tolerance, giving a fact of ±4x at the
numerator of the amplification factor of the common-mode signals that is not
surprisingly equal to the number of independently fluctuating elements (the four
resistors) multiplied by the associated tolerance, since tolerances sum up. After
this reasoning, the common-mode amplification factor can be written as:

Acm =
4x

1 + R1

R2

38This value is indicated on the resistance by a colour scale: a silver ring is a tolerance of
10%, a gold ring corresponds to 5% and a violet one 0.1%.
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and observing that, assuming valid, at least in a first order approximation, the
resistor matching condition, the quantity at the denominator is almost unitary,
as we can see from page 20 and sequent ones:

Acm ' 4x

we can write the common-mode rejection ratio as:

CMRR =
Adm
Acm

' Adm
4x

.

Therefore, the limitations to the common-mode rejection ratio comes from the
tolerances of the resistors.

1.12.3 Instrumentation amplifiers

Figure 1.91: An instrumentation amplifier.

To overcome the difficulty that we have just described, a new kind of ampli-
fier, called instrumentation amplifier and represented in Figure 1.91, was devel-
oped. Even though it can be found as a single component, it basically consists
of two different stages: a sort of differential amplifier, with two inputs and two
outputs, and a subtractor identical to the one we have just discussed. We can
now study in further details the first stage.

To study the behaviour of the first stage when we have a common-mode
input signal, we can assume the two input pins to be identically equal to VC .
This means that both the negative pins of the two operation amplifiers, since
we are dealing with a negative feedback system with ideal operation amplifiers,
will be set at:

V − = VC .

This means that there will not be any current flowing through the resistor RG,
since it will be placed between two nodes at the same voltage and, since the
operation amplifier will have an infinite input impedance, there will not be any
current flowing through R too. This means that we will not have any voltage
drop across the resistors R and thus both the outputs will be at the common-
mode voltage:

Vo1 = Vo2 = VC .
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Figure 1.92: Study of the first stage of an instrumentation amplifier under
common-mode signal.

This stage, therefore, does not reject the common-mode signal, but it has a
unitary common-mode amplification factor:

Acm1 = 1.

It is possible to note that nothing will change if one of the two resistors indi-
cated with R changes, therefore the common-mode amplification factor is almost
independent from the resistor matching and from any problem involving the tol-
erances of the resistors.

Figure 1.93: Study of the first stage of an instrumentation amplifier under
differential-mode signal.

Assuming now a differential-mode signal as in Figure 1.93:

V +
1 =

Vd
2
, V +

2 = −Vd
2

where we used the subscript 1 for the upper operation amplifier and the 2 for
the lower one, since we are dealing with negative feedback systems and ideal



90 CHAPTER 1. OPERATION AMPLIFIER

operation amplifiers:

V −1 =
Vd
2
, V −2 = −Vd

2
.

Therefore, there will be a voltage drop across the resistor RG and thus a current
flowing through it:

I =
V −1 − V

−
2

RG
=

Vd
2 + Vd

2

RG
=

Vd
RG

.

However, this current flows through both resistors R (since the operation ampli-
fier has an infinite input impedance, thus giving the following output voltages:

Vo1 =
Vd
2

+ IR =
Vd
2

+ Vd
R

RG
=

(
1

2
+

R

RG

)
Vd

Vo2 = −Vd
2
− IR = −

(
Vd
2

+ Vd
R

RG

)
= −

(
1

2
+

R

RG

)
Vd

thus giving the following differential-mode amplification factor39:

Adm1 =
Vo1 − Vo2

Vd
= 1 + 2

R

RG

that is mainly set by the value of the external resistor RG. In real instrumen-
tation amplifiers, in fact, all these components will be part of an integrated
device except for the RG resistor, that will be external and that can be changed
depending on the application considered.
It is possible to observe that this result is extremely similar to the one of a
non-inverting amplifier. In fact, rewriting the resistor RG as the series of two
resistors equal to RG, we can observe that a node between them will be set a
ground potential. The circuit, therefore, will be symmetric with respect to this
point and the same symmetry is reflected in the voltages applied. Therefore,
this point must necessarily be equal to the ground potential for symmetry rea-
sons. The overall gain, therefore, can be calculated considering a non-inverting
amplifier as the one represented in Figure 1.11 at page 13 where:

R1 = R, R2 =
RG
2
.

Considering now also the second stage of the instrumentation amplifier, it is
possible to calculate the overall common-mode rejection ratio of the network.
Since a common-mode signal entering the first stage will be again a common-
mode signal at the end of the first stage and, in the same way, a differential-mode
signal is again differential at the end of the first stage40, we can factorize the
differential-mode or common-mode amplification factors as the factors related
to the two stages:

CMRR =
Adm
Acm

=
Adm1Adm2

Acm1Acm2

but since we have just demonstrated that:

CMRR1 =
Adm1

Acm1
=
Adm1

1

39It is defined as the differential output over the differential input.
40And this is not as obvious as it seems to be.
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we obtain that:

CMRR = Adm1CMRR2.

We are therefore improving the overall common-mode rejection ratio of a factor
Adm1 given by the first stage. This is due to the fact that the first stage is not
directly rejecting the common-mode signal, it is just amplifying in a significant
way the differential-mode signal. We are therefore separating the two tasks, the
amplification of the differential-mode and the rejection of the common-mode,
between the two stages of the instrumentation amplifier.
The common-mode rejection ratio is therefore actually limited by the operation
amplifiers and, to a first approximation, the common-mode errors will be can-
celled by the second stage, since it is the difference between the common-mode
rejection ratios that is important. This leads us to achieve common-mode rejec-
tion ratios up to 90 or 140 dB.
We can now give some specifications that are useful for understanding the be-
haviour of an instrumentation amplifier. An usual gain range, for an instrumen-
tation amplifier, is generally between 1 (that is the value obtained without any
resistance RG) and 1000 (under a suitable choice of the resistance RG). In this
range, the device is guaranteed to work as specified regardless of the choice of
RG. Exceeding this value, the circuit will probably continue to work but its per-
formances will be no longer guaranteed. The gain (or equation) error represents
the maximum deviation of experimental data about the gain from the equation
that is assumed to be describing the gain. Usual values are, for example, 0.5%
and it is important to note that the gain equation41 may be not linear. An-
other important parameter is the non-linearity, that is defined as the maximum
deviation from the interpolating line; a typical value is 100 ppm. Note that, if
the gain equation is linear, this parameter will be conceptually similar to the
gain error we have previously defined; however, this is not always true. The last
parameter, the offset voltage, deserves a further study.

Vos1 Vos2

A1 A2

Vos

A

Figure 1.94: A cascade of two operation amplifier with their associated offset
voltage and the representation of the equivalent amplifier and the associated
offset voltage.

As an example, we can consider a network with multiple amplification stages.
Each one of these stages will have its own offset voltage and, in the example, we

41The gain equation is a characteristic equation that states the relationship between the
gain of the instrumentation amplifier and 1/RG. This error, therefore, will give the precision
of this equation in describing the real value of the gain.
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are considering two amplification stages, thus obtaining two offset voltages Vos1
and Vos2. Grounding as in Figure 1.94 the input, we can find the output as:

Vo = A1A2Vos1 +A2Vos2 = A1A2Vos

since the overall amplification factor is:

A = A1A2

and where Vos is the overall offset voltage. This gives, therefore:

Vos = Vos1 +
Vos2
A1

the overall offset voltage as expressed in terms of the offset voltages of each
stage. In the particular case we are describing, since the gain of the first stage
is:

A1 = G = 1 +
2R

RG

we can write the overall offset voltage of an instrumentation amplifier as:

Vos = Vos1 +
Vos2
G

.

A typical value for the offset voltage is 500 µV and we can observe that the
more we increase the gain of the first stage, the lower will be the offset voltage,
even though it is limited by the value of the offset voltage of the first stage.
A typical gain-bandwidth product for an operation amplifier is about 100 kHz,
that we can observe to not be very large, in particular being smaller than in
circuits in which we only have operation amplifiers, due to the fact that this
circuit is generally optimized only for having an high common-mode rejection
ratio. We can then obtain a drift of the offset voltage that typically is lower
than 0.5 µV/◦C and a bias current that is typically lower than 2 nA. In general,
these devices are made using a bipolar technology.

1.13 Single power supply operation amplifiers

In general, we will always assume to have a simple, symmetric power supply
network for the operation amplifiers that we are using. However, there are cases
in which this is not possible for many reasons: in these cases, we need to have
a single power supply.

Consider, for example, the inverting amplifier represented in Figure 1.95,
that is assumed to have a unitary gain. Since the output voltage range is limited
by the power voltage supply, the output range will be slightly smaller than the
interval [0, Vcc], therefore we cannot have a negative output regardless of the
input, as shown in Figure 1.96. Moreover, also the input swing is in general
limited by the power supply, therefore also the first part of the output voltage
could be wrong.

Back to the dual power supply network, we can observe that it will work fine
since:

Vi = 0 ⇒ Vo = 0
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−

+

0

+Vcc

R

R

Vi

Vo

Figure 1.95: A single-power supply operation amplifier in an inverting configu-
ration.

t

vo

vi

Figure 1.96: An example of output for a sinusoidal input.

is the equilibrium point of the circuit. We can note that this working point is
exactly in the middle between the two power supply voltages Vcc/2 and −Vcc/2.
In analogous way, we can try to find the equilibrium or reference point of the
single power supply network. According to the idea that we have just expressed,
it will be Vcc/2. Therefore, to pass from the symmetric power supply to a single
power supply we need to add to every node (except for the power supply nodes,
obviously) Vcc/2, thus biasing our network. Assuming thus to have a zero-signal
at the input, the output will be identically equal to Vcc/2. To bias the positive
input pin to Vcc/2, we need to add a suitable bias network as in Figure 1.98.

Assuming to have this bias network, we can decouple the input signal Vi from
the bias voltage Vcc/2 = V − by adding a capacitor C. The drawback of this
addition, however, is that the transfer function of this inverting configuration
has been modified:

T (s) = − R

R+ 1
sC

= − sCR

1 + sCR

thus integrating the signal up to a certain frequency at which we have a pole and
where the gain reach its desired value of −1 (given this choice of the resistors).
Sometimes we can also add a capacity in parallel to the RB resistor that is
placed between V − and ground, in order to get rid of the ripples that are
always present in the power supply. Therefore, we are able to amplify signals
only above a certain cut-off frequency:

fc =
1

2πCR
.
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−Vcc/2

+Vcc/2

R

R

Vi

Vo

Figure 1.97: A double-power supply operation amplifier in an inverting config-
uration.

−

+

0

+Vcc

R
CVi

R

RB

RB

Vcc

Vcc/2

Vo

Figure 1.98: A single-power supply operation amplifier in an inverting configu-
ration with the associated bias network.

Also in the non-inverting case, if we have a single-power supply, we are rising
everything of Vcc/2. The operation amplifier in non-inverting configuration with
the associated bias network is represented in Figure 1.99.

In this network, the capacitor C2 does not change the gain given by the par-
tition resistances of the feedback network R1 and R2. This capacitor, however,
will affect the bandwidth of the amplifier, therefore an amplification is not pos-
sible in the low-frequency limit. It is then possible also to have a capacitor C3

at the output of the network to obtain an output signal referred to zero, thus
being decoupled from the bias.
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−

+

+Vcc

0
R1

C3

Vo

R2

C2

RB

+Vcc

RB

Vcc/2

C1

Vi

Figure 1.99: A single-power supply operation amplifier in a non-inverting con-
figuration with the associated bias network.
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Chapter 2

Sensors

2.1 Signal readout from resistive sensors

2.1.1 Resistive sensors

After this description of the operation amplifiers and how they can be used to
amplify a signal, we can focus on the sensors, that are, in general, the source of
the input signal Vi considered in the previous chapter. A large and important
class of sensors is represented by the so called resistive sensors. These sensors
track a certain physical quantity (for example, temperature, strain, magnetic
field, ...) as a change in the resistance of a conductive element.
Considering S to be the considered physical quantity, assuming to have a small
change of this quantity we can in general associated to it a small variation of
the resistance, thus expanding with a linear approximation this dependence:

R = R0 + ∆R = R0

(
1 +

∆R

R

)
= R0(1 + αS) = R0(1 + x)

where we have defined the following coefficient:

α =
1

R0

dR

dS

∣∣∣∣
R=R0

that depends on the physical phenomenon we are considering in this sensor.

Figure 2.1: Example of single-ended resistive measurement.

A problem, however, at this point may arise: how is it possible to measure
only variations in the resistance (that are, in general, extremely small) and
not the average value R0 of this resistance? In other words, we can consider

97
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single-ended measurements, represented in Figure 2.1. In this case, we bias a
resistor using a certain current generator I and we measure the variations of
the associated voltage drop:

V = IR = IR0(1 + x) = IR0 + I∆R.

The problem, however, is that in general we have a large bias signal IR0 on top
of a very small variation I∆R that we would like to measure. Therefore, an ex-
tremely high precision is required for measuring the value of x with the needed
accuracy. Moreover, we can have noise, interferences, ground potentials fluc-
tuations and any other problem generally affecting single-ended measurements
that come to degrade the performance of our system. This kind of measurement,
therefore, can be used only for high-level signal, that are characterized by a low
noise and that are propagated for short distances through the environment.
How is it possible, however, to have a differential measurement for resistive
sensors?

2.1.2 Wheatstone bridge

Figure 2.2: The Wheatstone bridge.

The answer to the concluding question of the previous section is called
Wheatstone bridge. This kind of network, represented in Figure 2.2, allows dif-
ferential measurements and that can be used associated to suitable amplifiers.
In it, we are measuring the so called unbalance of the network, that is the dif-
ference in the two middle voltages of the two arms of the bridge; Vcc is the bias
voltage of the network. The unbalance VS can be found by writing a partition
for the two arms of the bridge:

VS = Vcc

(
R4

R3 +R4
− R2

R1 +R2

)
= Vcc

(
1

1 + R3

R4

− 1

1 + R1

R2

)
.

At our reference value, ideally, the unbalance must be identically equal to zero,
thus giving the following conditions:

VS = 0 ⇒ R1

R2
=
R3

R4
= k.

To choose the value of this parameter k, we can require that the maximum
sensitivity of the measured voltage Vs to a variation of the resistances:

dVs
dR1

=
Vcc(

1 + R1

R2

)2 ·
1

R2
=
Vcc
R1
· k

(1 + k)2
.
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From this expression, we can observe that it depends exclusively on the absolute
value of the supply voltage Vcc and on the resistance R1, obviously, apart from
being a function of the ratio k. The sensitivity of the bridge with respect to this
parameter can be observed in Figure 2.3.

Figure 2.3: The sensitivity of a Wheatstone bridge as a function of the ratio k.

It is important that, even though it seems, this is not a gaussian behaviour
and it attains its maximum in:

k = 1.

This means that, to maximize the sensitivity, we have to require:

R1 = R2 = R3 = 〈R4〉

where three resistors are equal and the fourth one is equal to them on average
(apart from its variations). Assuming therefore:

R1 = R2 = R3 = R, R4 = R(1 + x)

we have that the output voltage can be written as:

Vs = Vcc

(
R(1 + x)

R(2 + x)
− 1

2

)
= Vcc

x

2(2 + x)
.

Note that the exact relationship that we have obtained, in this case, is not a lin-
ear one. In general, this is not good property of this device, since we would like
to have linear sensors, otherwise we would need to invert a non-linear relation-
ship to determine the desired physical quantity. However, since the normalized
variation x of the resistance is in general a small quantity (a few percent at the
very most), we can make the following approximation:

Vcc
x

4
(
1 + x

2

) ' Vcc
4
· x ·

(
1− x

2

)
' Vcc

4
x− Vcc

8
x2 ' Vcc

4
x = Vs

where we have used a first order approximation of the exact denominator and
we have neglected second order terms. In general, the measured voltage Vs is
really small, as in the following example:

Vcc = 10 V, x = 0.002 = 0.2% ⇒ Vs = 5 mV.
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In this case, we can calculate the linearity error as:

ε =

∣∣∣∣∣
x

2(2+x) −
x
4

x
2(2+x)

∣∣∣∣∣ =

∣∣∣∣1− x

4
· 2(2 + x)

x

∣∣∣∣ =
x

2

and assuming the values that we have defined in this example:

ε = 10−3 = 0.1%.

The maximum tolerable value, for this error, depends on the specifications of
the problem we are dealing with.

Figure 2.4: Linear approximation and exact behaviour of the output voltage of
the bridge and relative error in this approximation.

A possible solution to increase the output signal with respect to the previous
case is to have two different active elements that can vary their resistances. In
particular, assuming the bottom right resistor to be variable, the only other
possible variable resistor will be top left one, as represented in Figure 2.5.

Figure 2.5: Wheatstone bridge with doubled sensitivity.

In fact, if on the other hand we were using the top right resistor as a variable
one, we would obtain a zero output signal, since we would have the same ratio
between the resistors in the two branches. On the other hand, using the bottom
left resistor as the second variable resistor, the output signal would have been
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again zero due to a cancellation between the two terms that compose the output
signal Vs. The only possibility left is therefore the one that is represented in
Figure 2.5, since a normalized variation x will increase the term corresponding
to one branch of the bridge and it will decrease the term related to the other
one. From calculations, in fact:

Vs = Vcc

(
R(1 + x)

R(2 + x)
− R

R(2 + x)

)
= Vcc

x

2 + x

and again, since:
x� 2 → 2 + x ' 2

we obtain:
Vs ' Vcc

x

2
.

Comparing this formula with the sensitivity that we have previously obtained,
we can immediately observed that this approximated value is equal to twice
the approximated value that we had using just one variable resistor: we have
doubled the sensitivity. Moreover, also in this case it is possible to calculate
the non-linearity error (that arises from the fact that we are approximating a
non-linear relationship with a linear one), obtaining a value that is identical to
the one we get in the previous case:

ε =
x

2
.

Figure 2.6: Wheatstone bridge with the maximum possible sensitivity.

In certain cases, the sensitivity of a Wheatstone bridge can be further in-
creased if we can use sensors with a different dependence (with respect to the
sign, but same modulus) on the normalized variation x, as represented in Figure
2.6. An example of these kind of devices are strain sensors. The sensitivity, in
this case, can be calculated as:

Vs = Vcc

(
R(1 + x)

2R
− R(1− x)

2R

)
= Vccx

and we can immediately observe that it is four times higher than the value we
get using just one single active element. Moreover, this relationship is exact,
therefore the linearity error in this case can be assumed to be ideally equal
to zero. The problem, however, is to find sensors where this kind of circuit is
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possible, since it is not always available and it can be quite costly due to the
fact that we are using a lot of sensors for a single measurement.
We are now able to define a few important parameters for the Wheatstone
bridge. The first one is the sensitivity of the bridge, that is defined as the
output voltage for a unitary bias voltage:

Vcc = 1 V

that is associated to the maximum variation of the normalized resistance:

x = xmax.

This parameter is usually expressed in millivolts over volts. In the previous case:

Vs = 5 mV, Vcc = 10 V ⇒ S = 0.5 mV/V.

A second parameter is the accuracy, that is defined as the difference between
the real characteristic equation and the linear one expressed as a percentage. In
reality, this parameter will be higher than the non-linearity error that we have
calculated in the previous examples, since passive and active elements of the
circuit will not behave like ideal elements.
Last is the resistance, that is the resistance of the bridge when it is measured
between the output terminals. It can computed as its nominal value, therefore
when:

x = 0

and from the circuit represented in Figure 2.2, we can observe that it is the
parallel between the two branches of the bridge, each equal to the series between
two identical resistances R:

Req =
(R+R)(R+R)

(R+R) + (R+R)
= R

and therefore, if the bridge is balanced, the equivalent resistance of the bridge
in nominal conditions will be equal to the nominal value of the resistances.

Figure 2.7: A Wheatstone bridge connected to an amplifier and the equivalent
circuit of the bridge when it is seen from the amplifier.

The output signal of a Wheatstone bridge, then, will be the measured volt-
age that will be passed to a certain amplifier. We can therefore discuss the
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requirements that are needed for having a good and reliable amplification of the
signal. Considering the circuit in the upper part of Figure 2.7, therefore, we can
study the Thévenin equivalent circuit of the bridge with respect to the input
pins of the amplifier. Considering the lower pin in the drawing, therefore, we
can observe that to pass from it to the ground we have voltage equal to Vcc/2
and an equivalent resistance (that can be calculated switching off the voltage
source Vcc, thus replacing it with a short-circuit) that is equal to R/2, since it
is the parallel between two identical resistances R. For the upper pin, on the
other hand, we can say that in nominal behaviour (x = 0) the voltage applied
will be Vcc/2 and then, when we have variations of the normalized resistance x,
it will have an additional voltage that can be approximately written as Vccx/4.
The equivalent resistance of this pin, on the other hand, can be calculated again
switching off any voltage source (and replacing it with a short-circuit), thus
resulting to be the parallel between R and R(1 + x). However, since we are
dealing with small variations of the normalized resistance x, also in this case
the equivalent resistance will be the parallel between two identical resistors R,
thus being R/2. From this reasoning, therefore, we obtain the equivalent circuit
represented in Figure 2.7.
We can now, referring to the previous example:

Vcc = 10 V, Vs = Vcc
x

4
' 5 mV, xmax = 0.2%

investigate the requirements for having a good amplifier. First of all, we can
observe that the amplifier is a differential amplifier, therefore the common-mode
signal Vcc/2 should not be amplified. Assuming to be exploiting the full dynamic
of the signal, thus requiring that for the maximum signal we obtain as an output
a voltage that is equal to Vcc:{

Vs = 0 → V0 = 0

Vs = 5 mV → V0 = Vcc = 10 V

we obtain the following gain:

G = 2000.

Therefore, we would like to have a large value of the gain.
Then, we can consider for example to have a finite input impedance Ri between
the two input pins of the amplifier. In this case, if the differential signal is Vccx/4,
we will not measure this value but we will measure the following partition Vi:

Vi = Vcc
x

4
· Ri
Ri +R

where R is the overall resistance of the loop. This value can then be approxi-
mated as:

Vi ' Vcc
x

4

(
1− R

Ri

)
and therefore we can write the error of this value as:

ε =
R

Ri
.
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This means that we would like to have an high value of the input impedance
for this amplifier. In particular, assuming:

R = 100 Ω, ε < 0.1%

we are making the following requirement on the input resistance:

Ri ≥ 1000R = 100 kΩ.

Last, the maximum common-mode signal that we are applying to our circuit is:

Vcm = 5 V

and we want to reject it as much as possible, while the maximum differential
input voltage is equal to 5 mV. Assuming that this circuit will work with an 8-
bit system (we will study later on how the performance of sensors and amplifiers
influences converters and other part of the acquisition system), we can say that
the minimum signal that we would like to distinguish1 is equal to the maximum
differential input signal divided by the number of channels that we have:

VLSB = Vcc
x

4

∣∣∣
max
· 1

28
' 20 µV.

Since at the output of the amplifier we will have a superposition of the amplified
differential signal and of the rejected common-mode signal:

V0 = VcmAcm + VdmAdm = Adm

(
Vdm + Vcm

Acm
Adm

)
since we want the differential mode signal to be dominant over the common-
mode signal:

Vcm
Acm
Adm

� Vdm

and we can rewrite this requirement according to the definition of common-mode
rejection ratio CMRR:

CMRR =
Adm
Acm

� Vcm
Vdm

.

This allows us to make the following estimate of the minimum common-mode
rejection ratio that is desired:

CMRR ≥ Vcm
VLSB

=
5 V

20 µV
' 108 dB.

This is a very conservative estimate, in reality this minimum value is slightly
smaller, even remaining quite high. These requirements are quite stringent and
difficult to match: this can be generally done only using an instrumentation
amplifier.

1The subscript LSB, in this quantity, means “least significant bit” and it is the smallest
signal that we need to distinguish from the zero-signal.
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2.1.3 2-, 3- and 4-wire connections

In general, we assume wirings in circuits to be ideal links, and this is a good
approximation when we are in a controlled environment, such as a lab. In re-
ality, however, this approximation does not hold, since dealing with remotely
located bridges (useful for example when measuring particularly high temper-
atures) cable resistances and noise pickup is a big source of errors. In general,
the resistances in cables are much smaller than the resistances in the bridge
(thus being negligible) or they give a constant offset error, that can be suitably
compensated. However, changes in cable resistances during the operation of the
circuit (for example, with temperature) lead to an error signal (since they gives
a variation of the gain) at the bridge output. We can thus investigate the effect
of the connections on the system.

Figure 2.8: The 2-wire connection of a Wheatstone bridge.

The first way of connecting a Wheatstone bridge with a remotely located
variable resistance is the 2-wire connection, represented in Figure 2.8. Assuming
RL to be the additional resistances due to the link, solving this network we
obtain:

Vs = Vcc

(
−1

2
+
R(1 + x) + 2RL
R(2 + x) + 2RL

)
=

= Vcc

(
−R(2 + x)− 2RL +R(2 + 2x) + 4RL

2R(2 + x) + 4RL

)
=

= Vcc
Rx+ 2RL

2R(2 + x) + 4RL
.

In a first order approximation, since:

x� 2

we can write:

Vs ' Vcc
Rx+ 2RL

4R
= Vcc

(
x

4
+
RL
2R

)
=
Vcc
4

(
x+

2RL
R

)
.

Therefore, we can observe that 2RL/R is the error related to the presence of the
links. Assuming the following typical values for the resistances, the error can be
calculated as:

2RL = 0.5 Ω, R = 100 Ω → ε = 0.5%.

We need thus to compare this value to the desired precision on the specific
application we are dealing with. If the link resistances RL were constant, they
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would give a constant offset in value of the measured voltage and therefore we
could compensate for their presence. The link resistances, however, varies due to
the fact that they are sensitive to the environmental conditions, giving a certain
noise term in the output.

Figure 2.9: The 3-wire connection of a Wheatstone bridge.

If the previous error is too large for the application we are dealing with,
we can try to reduce it. The problem, in the 2-wire connection, is that the link
resistances RL are in series to the variable resistor R(1+x) and therefore we are
not measuring the voltage drop across this variable resistor but also the voltage
drops across the two links. Adding a third connection, as represented in Figure
2.9, we create the 3-wire connection and try to measure, at least on one side, the
voltage at the remote node that is between one link resistance and the variable
resistance, where we have added the third connection. From this circuit, we can
write:

Vs = Vcc

(
−1

2
+

R(1 + x) +RL
R(2 + x) + 2RL

)
=

= Vcc

(
−R(2 + x)−���2RL +R(2 + 2x) +��

�2RL
2R(2 + x) + 4RL

)
=

= Vcc

(
Rx

2R(2 + x) + 4RL

)
=

= Vcc
Rx

4R
(
1 + x

2 + RL
R

)
and again, in a first order approximation, since:

x

2
+
RL
R
� 1

we obtain:

Vs ' Vcc
x

4

(
1− x

2
− RL

R

)
= Vcc

x

4

(
1− Rx+ 2RL

2R

)
.

Since we have assumed, in the previous section, to be reading the output signal
Vs with an high-impedance amplifier, from the middle link resistance RL there
will not be any current flowing and, therefore, the voltage at both ends of the
resistance will be identical. This is the difference with the previous case, where
we were measuring also the load effects of the two link resistances due to the
fact that there was a current flowing through the link used for measuring the
voltage.
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Figure 2.10: The Kelvin (or 4-wire) connection of a Wheatstone bridge.

An further extension of this way of reasoning is represented by the so called
Kelvin (or 4-wire) connection. In this case, the whole bridge is remotely lo-
cated and we have four different active elements. In this kind of circuit, also
the bias voltage Vcc and the ground are influenced by the presence of the resis-
tances of the link RL, therefore we need to refer everything to the same local
ground and to take into account the voltage drop across the wirings, that have
a certain resistance RL. It is important to note that, even though it is called
4-wire connection, in reality we have six wires connecting the local circuit to the
Wheatstone bridge and bringing back the signal. Moreover, the ground of the
bias voltage and the one of the bridge are equal and, referring every voltage to
the same local ground, we are getting rid of the ground fluctuations. It is also
possible to have a different configuration (in which the bridge is excited with a
constant current) with respect to the one represented in Figure 2.10, that will
reduce the number of wirings and thus of resistances to four. Note that, apart
from the wirings that are connecting Vcc and the ground to the bridge, on the
other wirings there will not be any voltage drop since, at least ideally, there
will not be any current flowing across these resistances. Apart from the intrinsic
problems of a Wheatstone bridge with four active elements, additional problems
may arise from the cost of this circuit and from the fact that, in some applica-
tions, there is not enough space for running all these wires. As a rule of thumb,
the 3-wire connection is suitable up to a few tens of metres of distance between
the varying the resistor and the rest of the bridge; for longer connections, differ-
ent schemes must be used. Note that, in all these schemes, the stability of the
bias voltage Vcc is a common concern.

2.1.4 Temperature compensation

In general, it is possible to study the dependence of the output of a Wheatstone
bridge (considering, for simplicity, the full bridge with four active elements)
from a certain physical quantity S as:

Vs = Vccx = VccαS

where we have defined the following proportionality constant:

α =
1

R0

dR

dS

∣∣∣∣
R0

.
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In reality, this proportionality constant, regardless of the physical quantity we
are dealing with, is a temperature-dependent quantity:

α = α(T )

thus introducing inaccuracies in the output (unless we are measuring the tem-
perature). If we are not measuring the temperature, in fact, a change in it and
not in the physical quantity S can be interpreted as a variation of the physical
quantity that we would like to measure and, therefore, we want to compensate
it. On the other hand, if we are measuring the temperature, our sensor will be
non-linear with it (since α has, in general, a non-linear dependence from the
temperature), but we can account for this effect.
In general, when we are not measuring a temperature, we need to compensate
for its variations, and there are several ways of doing this; we will study only
the simplest one. The starting point, in this case, is the derivative of the output
voltage with respect to the temperature that, linking variations of the temper-
ature with variations of the output voltage, we would like to have identically
equal to zero:

dVs
dT

= S

(
α
dVcc
dT

+ Vcc
dα

dT

)
= 0.

From this expression, we can say that the only way of doing it is to ensure that
the changes corresponding to the two terms between parenthesis compensate
each other. This means that the relative variation of the bias voltage due to
the temperature must be equal to the relative variation of the proportionality
constant α:

α
dVcc
dT

+ Vcc
dα

dT
= 0 → 1

Vcc

dVcc
dT

= − 1

α

dα

dT
= −β.

Therefore, the bridge excitation voltage must be temperature dependent and it
must have an opposite rate of variation with respect to α.

A simple temperature compensation scheme that we can implement is to
added a fixed resistor in series to the Wheatstone bridge, as it is represented
in Figure 2.11. This additional resistance RT is assumed to be temperature
independent (or, at least, with a much smaller dependence than the variable
resistors in the bridge) and we can define the equivalent resistance of the bridge
RB when seen from the node at voltage Vcc as:

RB ' R.

In this case, the bias voltage of the bridge can be written as:

Vcc = V ′cc
RB

RB +RT

and therefore the variation of the bias voltage with respect to the temperature:

dVcc
dT

= V ′cc
RT

(RB +RT )2

dRB
dT

where we have considered, as we have said, only RB to be a temperature depen-
dent quantity. Considering again the expression for Vcc, this relationship can be
rewritten as:

1

Vcc

dVcc
dT

=
RT

RB +RT

1

RB

dRB
dT
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Figure 2.11: A simple temperature compensation scheme for a Wheatstone
bridge.

and since we can define the relative variation of the bias voltage as:

1

Vcc

dVcc
dT

= −β

and the relative variation of the resistance of the bridge:

1

RB

dRB
dT

=
1

R

dR

dT
= γ

where γ is the temperature-resistance dependence coefficient, we obtain that:

−β =
1

Vcc

dVcc
dT

=
γRT

RB +RT
' γRT
R+RT

.

Rewriting this result in terms of the temperature independent resistance:

RT = − β

β + γ
R

we obtain a very simple and popular solution of compensating for temperature
variations. However, this compensation scheme has a few disadvantages. In fact,
it is only possible if and only if:

β < 0

otherwise the required resistance will be negative, and if:

β + γ > 0 → γ > −β = |β|.

Moreover, the implement it we need to accurately know the temperature depen-
dence of all the resistances, thus precisely knowing both β and γ. Last, it leads
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to a reduced output signal and in some applications this may be a problem.
This is the reason why this compensation scheme is usually adopted only in the
range:

25± 15 ◦C

while for larger temperature ranges we need to implement more complicated
compensation schemes.

2.2 Sensor generalities and parameters

We can now deal with sensors from a more general perspective. A sensor is
defined as a device that convert an input physical property, also called the
stimulus, to a different (in our case, electrical) signal. They are, actually, energy
converters, passing energy from one form to another one. A certain relation,
called the characteristic relation of the sensor, is present between the input
range and the output range of the sensor. Most of the times (but not always)
both ranges start from zero and they reach a maximum value that is called
full-scale. An often used synonymous of range is the word span. It is important
to remember that a lot of disquisitions are possible on the formal differences
between a sensor and a transducer.
Sensors, in general, can be distinguished depending on various properties:

• the measured quantity, that can be a temperature, a pressure, a velocity,
a current, ...;

• the detection mean, that can be biological, chemical, electrical, mechani-
cal, ...;

• the sensor material, that can be a semiconductor, an organic material, a
liquid, ...;

• the field of application, that can be a scientific research, an industrial
project, a medical application and so on.

Also the characteristics of sensor can be divided into various classes:

• the static parameters, such as the transfer function, the accuracy, the
resolution, ..., that are related to the steady-state performances of the
system;

• the dynamic parameters, such as the frequency response, the settling time,
..., that are related to the dynamical performances;

• other parameters, for example the operating and storage conditions, the
reliability and so on.

To fully characterize a device, a fundamental quantity is the input-output char-
acteristic of the sensor considered. It is a relationship relating the input of the
sensor (that is the measured quantity) to its output (in our case, in general
a voltage, a current, a charge, a capacitance or any other electrical quantity).
When these devices are used as detectors, the inverse function of this relation-
ship is needed, since we want to be able to relate a certain output electrical
signal to the input physical quantity that we are measuring.
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Figure 2.12: Examples of input-output characteristics.

Figure 2.13: Example of input-output characteristics in which we have defined
the input and output ranges the full-scale inputs and outputs.

Once we have defined a characteristic relation, we can identify the input and
output ranges as the range in which the input and the output of the sensor can
vary. Moreover, we call the full-scale input and the full-scale output, respectively,
the maximum values of the input and of the output. Both quantities can be
identified in the example of characteristic equation that is represented in Figure
2.13.
We can now move to the definition of a few quantities that are important for
describing the performances of our system.

2.2.1 Sensitivity

The sensitivity of a sensor is defined as the ratio between the output and the
input variations (respectively, dSo and dSi):

S =
dSo
dSi

.

In linear sensors, the sensitivity is constant. However, in general this is not the
case, and we can only approximate this quantity as linear through a process
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called linearisation, that can be performed (without excessive errors) only over
a limited input range. On the other hand, if we do not want (or we cannot)
linearise this relationship, we need data processing for inverting the character-
istic equation of the sensor and thus trace back the value of the input physical
quantity from the output electrical one. It is important to note, moreover, that
the characteristics of sensors can also be non-monotonic, and this is an even
bigger problem.

2.2.2 Linearity

Figure 2.14: Example of linearisation of a characteristic equation.

As we have said before, in general the characteristic equation is a non-linear
relationship and, for the sake of simplicity, we can linearise it in a certain inter-
val. Therefore, we define the linearity (or non-linearity) error as the maximum
difference between the real transfer function of the sensor and its linear approx-
imation calculated at a fixed output and divided by the full-scale input:

ε =
max(∆)

FSi
.

Note that, in the Figure 2.14, the quantity that we called ∆ is represented
as L2 or L1 depending on the linear approximation considered. In fact, there
are several different ways of linearising a transfer function and, therefore, of
expressing this error; we need thus to understand what is the one a certain
data-sheet is referring to.

The first way of linearising a function, that is represented in the left hand-side
of Figure 2.15, is to draw a line that starts from the origin and best approximates
the curve (through a least squares approximation). Alternatively, we can define
a linear relationship that tracks the edges of the transfer function; this kind of



2.2. SENSOR GENERALITIES AND PARAMETERS 113

Figure 2.15: Example of different kind of linearisation.

curve is represented in the central graph in Figure 2.15. Last, in the right hand-
side of the same Figure the linear characteristic is the theoretical behaviour
of the device and, therefore, it can be derived from the underlying theory. It
is important to note that all these different linear relations will give different
non-linearity errors.

Figure 2.16: Example of best linear relationship approximating the real transfer
function of the device.

An way of defining the non-linearity error that is independent from the
choice of the linearisation method considered is the independent non-linearity.
In this case, we adopt as linear characteristic the straight line that minimizes
the maximum absolute non-linearity error. This line can be found by applying
a least square approximation starting from a generic straight line on the graph:

y = mx+ q

and determining the two unknown parameters q and m through the minimiza-
tion of the least square error. In this case, the data-sheet will specify the two
parameters m and q to which all other specifications are referred.

2.2.3 Resolution, precision and accuracy

The resolution of a sensor:
∆

FSi
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is defined as the smallest increment in the stimulus that can be sensed; it can
be specified as an absolute quantity or as a percentage of the full-scale of the
input. In principle, in fact, even the smallest increase in the input will lead to
a variation of the output. However, in real devices, due to the presence of the
noise, this is not true; therefore, we must be able to distinguish this variation
on top of the noise. This is the reason why, in real devices, the resolution is
ultimately determined by the noise of the sensor itself. Moreover, in ideal devices
this parameter will tend to zero: the lower is the resolution, the better is the
device. Other factors (such as, for example, the noise in electronics front-end,
the digitization and so on) can further degrade it.
A different parameter (even though in common language they are often used as
synonymous) is the precision, that in this field is related to the reproducibility of
the results. It is defined, therefore, as the ability of the sensor to reproduce the
same result after repetitive experiments in the same conditions. It is extremely
important to note that precision is not resolution: a bad digital clock with
a lot of digits may have an high resolution, for example measuring even tiny
time intervals, but worse precision, since repetitively measuring the same time
interval it will give every time a different measurement. Take care of not using
these terms as synonymous.

Figure 2.17: An intuitive representation of the concept of accuracy.

The last fundamental parameter is the accuracy of the sensor, that is defined
as the maximum deviation from the ideal measured value for many nominally
identically sensors. If, in these measurements, we have a strong random compo-
nent, the average value should be considered.
Therefore, while the precision measures the spread and, therefore, the repeata-
bility of the measurements, the accuracy measures the error, thus the difference
between the expected values that come from an ideal characteristic. An intuitive
representation of the difference between accuracy and precision is represented in
Figure 2.18. Note that the simplest way of increasing the accuracy is to change
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the equation describing the ideal behaviour of the device; this process is called
calibration.

Figure 2.18: Difference between precision and accuracy.

2.2.4 Dynamic parameters

Under the name of the dynamic parameters we can collect many other param-
eters that we have already, at least partially, discussed. For example, to this
category will belong the frequency response of the system, its response time
and its bandwidth.

2.3 Deformation sensors

A first example of resistive sensors that we can study are the deformation sen-
sors, that are used to measure strain. Before studying how it is possible to
measure these quantities, we need to briefly study the theory underlying them.
Assuming a load F applied on a material in a direction that is perpendicular to
one of its surfaces of area S, we define a stress as:

σ =
F

S
.

This stress will determine a deformation of the material considered; we define
strain this deformation per unit length:

ε =
∆L

L
.
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Typical values for a strain are in the order of 10−3 and may typically expressed
in micro-strains or µstrain, that means in units of 10−6:

10−3 = 106 µstrain.

L

S

F

∆L
2

∆L
2

Figure 2.19: A material when a certain stress is applied.

Figure 2.20: Stress as a function of the strain for different classes of materials.

Material, under the effect of a stress, behaves differently. In particular, we
can define four different classes of materials:

• brittle materials;

• strong materials;

• ductile materials;

• plastic materials;

and distinguish between them according to their characteristics. In particular, in
general we can study the strain of a material as a function of the stress applied,
as represented in Figure 2.20, defining the following ranges:

• elastic range: the system is represented by a linear relationship between
the stress σ and the strain ε according to Hooke’s law:

σ = Eε



2.3. DEFORMATION SENSORS 117

where E is the so called Young’s modulus; in this range every deformation
is reversible;

• plastic range: in this range, that is limited on one side from the elastic limit
and on the other from the fracture point, the deformation is permanent.

Depending on the presence or absence and size of these regions, it is possible to
distinguish between the different classes of materials.
In the elastic region, where as we have said the Hooke’s law is valid, an axial
strain εax is always accompanied by a lateral strain εlat of opposite sign in the
two perpendicular directions. The ratio between these two quantities is called
the Poisson ratio:

ν = −εlat
εax

.

Figure 2.21: Deformation of a material in the various directions.

Referring to Figure 2.21, we can write the elongation in the axial direction
as:

2∆L = ε

and therefore the elongation in one of the two non-axial directions will be:

−2∆L′ = −νε.

Assuming the original volume to be a cube with length L of the edges, we can
write the new volume when a stress is applied as:

V ′ = L3(1 + ε)(1− νε)2.

Expanding this product under the assumption of having a small strain ε:

V ′ = L3(1 + ε)(1 + ν2ε2 − 2νε) ' L3(1 + ε)(1− 2νε) '
' L3(1 + ε− 2νε) ' L3 [1 + ε(1− 2ν)]

and therefore the relative variation of the volume can be written as:

∆V

V
= ε(1− 2ν).
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We can thus immediately observe that, if the volume does not change when a
stress is applied, the Poisson ratio can be written as:

ν = 0.5

and this condition will be satisfied for the majority of the incompressible mate-
rials. Moreover, the following theoretical limits are established:

−1 < ν ≤ 0.5.

Therefore, for compact and weakly compressible materials (liquids and rubbers,
in particular) the stress will primarily result in a shape change, therefore:

ν ' 0.5.

For the majority of the well-known solids (metals, polymers, ceramics, ...) this
ratio is slightly lower:

0.25 < ν < 0.35.

For glasses and minerals, that are more compressible, this ratio tends to zero:

ν → 0.

For gases, that can be assumed to be perfectly compressible:

ν = 0.

A particularly strange class of materials is the one of the materials with negative
Poisson’s ratio: they are called auxetic materials and an example is represented
by Gore-Tex.
In our case, since we are dealing with sensors, we will use metals and we now
have to study how it is possible to make use of this phenomenon for creating
strain gauges (or gages). The most immediate way of doing it is starting from
the second Ohm’s law:

R = ρ
L

S

and taking the logarithm of this relationship:

log(R) = log(ρ) + log(L)− log(S)

and differentiating it:
∆R

R
=

∆ρ

ρ
+

∆L

L
− ∆S

S

we can obtain the relative variation of the resistance depending on the other
factors. In particular, recognizing the variations of the length and of the surface
as the strain along the axial and perpendicular directions, we can write:

∆L

L
= ε,

∆S

S
= (1− νε)2 − 1 = 1 + ν2ε2 − 2νε− 1 ' −2νε

and thus we obtain:
∆R

R
=

∆ρ

ρ
+ ε(1 + 2ν).
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The term ∆ρ/ρ is called piezoresistivity and is related to the fact that a change
in the pressure on a solid can change the band structure of the material and,
therefore, also its resistivity. Therefore, this piezoresistivity coefficient is pro-
portional to the strain ε and it is generally tabulated. We can thus define the
gauge factor as:

GF =
∆R
R

ε
= 1 + 2ν +

∆ρ
ρ

ε
.

The gauge factor gives the slope of the relation between the relative variation
of the resistance and the strain. From the value of the Poisson’s ratio in metals,
we expect this gauge factor to be approximately equal to be between 1.5 and
1.8. If the gauge factor is approximately equal to 2, it means that the material
we are considering has a large piezoresistivity and, therefore, it is particularly
good for a sensor, since this will increase the sensitivity of the device. Typical
value of the gauge factor as reported in Table 2.1.

Material Gauge factor GF
Constantans (Ni-Cu alloys) 1.8− 2.2

Ni-Cr alloys ∼ 1.9
Ni −12

Pt-Ir ∼ 5
Doped Si (with impurities) ±100−±200

Poly-Si ±30

Table 2.1: Gauge factors for certain materials.

A part from the piezoresistivity effect, then, also the temperature dependence
of the materials will matter. In fact, since Ni-Cu alloys has a small dependence
from the temperature, that is defined through the following coefficient:

TCR =
∆R

∆T

they are widely used for this kind of sensors. On the contrary, silicon has an
high TCR coefficient.

Figure 2.22: Metal-foil strain gauges.

The first example of these sensors is represented by metal-foil strain gauges.
These devices, that can have a size that is up to a few centimetres, consists of
a grid of fine metallic wire or of a foil. The wire or the file must be bonded
(glued) to the strained surface or to a carrier matrix by a thin layer of epoxy,
which must transmit the mechanical strain while being an electrical insulator.
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The advantages of this device are that it is extremely simple, has a large area,
is not expensive and not demanding: all these advantages make this kind of
devices extremely common. The disadvantages are that they can work in a
limited temperature range and that we must ensure that the deformation of the
bulk structure must be equal to the deformation of the metallic wires; in other
words, the epoxy must not absorb the deformation.

Figure 2.23: Thin film strain gauges.

An alternative solution is represented by thin film strain gauges, that can
be built using the thin film technology, for example sputtering individual atoms
or molecules, as it is often done in microelectronics. In this case, an insulation
layer, typically a ceramic, is deposited on the stressed metal surface and then
the strain gauge is deposited onto this layer. Vacuum deposition and sputtering
techniques are therefore used for bonding these materials from a molecular point
of view. These kind of sensors are much smaller (just a few millimetres) and are
directly attached to the substrate, thus having an high range of possible working
temperatures.

Figure 2.24: Semiconductor strain gauges.

Similar to these devices are semiconductor strain gauges, but in this case
on the insulator we are depositing a semiconductor instead of a metal. These
devices, since they are built using semiconductors, will have a larger gauge factor
GF due to the presence of a significant piezoresistance; however, they are not
linear and they are significantly temperature dependent. In the case of larger
devices, they can be bonded using the same epoxy that were used for foil gauges,
while for smaller ones we can use the same technology that is usually adopted
for integrated circuits.
A first, important problem of strain gauges is that they are also sensitive to
strains that are perpendicular to a certain longitudinal axis. This is an undesired
effect: in fact, we would like to know the direction in which a certain stress is
applied and, therefore, we would like to be measuring a stress, with a certain
device, exclusively along a given direction. In plane wire strain gauges, this
transverse sensitivity is related to the presence of portions in the end loops that
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lay in the transverse direction and, therefore, that will be strained even if we
are applying a stress in a different direction from the desired one. In foil strain
gauges, it is not possible to identify just a single contribution to the transverse
sensitivity: it will be the sum of many factors, such as the thickness and the
elastic moduli of the backing and of the foil, the with-to-thickness ratio of the
foil grid-lines and so on. In general, defining the transverse gauge factor as GFT
and the axial gauge factor as GFL, we can define the transverse sensitivity factor
as:

K =
GFT
GFL

and it will be usually between zero and 100%.

Figure 2.25: Temperature dependent behaviour of a strain gauge.

Another problem is represented by temperature effects. This is a particularly
complicated problem since, by varying the temperature, we can determine two
main effects:

• direct variations of the resistivity of the material and consequently varia-
tions of the the resistance R of the device;

• deformations of the sensor and of the material related to the variations of
the temperature and, consequently, variations of the measured resistance.

In general, therefore, the temperature dependence gives the worst error that
we can commit and it sets a limit to the strain error; however, we are able to
compensate it. To take into account these effects without directly compensating
them, we can use suitable correction curves as the one represented in Figure
2.25.

An example of compensation scheme is the dummy gauge compensation. In
this scheme, we have a Wheatstone bridge with four sensitive elements where
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Figure 2.26: Dummy gauge compensation.

one arm is attached to the material and thus varies with both the temperature
and the strain, while the other is not attached to the material, thus varying only
with the temperature (it does not undergo to any mechanical deformation).
Note that strain sensors are suitable for realizing Kelvin bridges. Considering
for example a bar that is bending toward a certain direction. If on one face of the
bar, for example the one that is elongating, we have two strain sensors belonging
to different arms of the bridge (in the positions that we have previously studied),
while on the other side, that is contracting, we have two other strain sensors,
then we can determine a variation with same magnitude but different sign of the
resistances on different sides, thus allowing us to obtain this 4-wire connection.

2.4 Temperature sensors

Figure 2.27: A contact sensor at temperature Ts is used for measuring a system
at temperature Tx when the environment is at temperature Ta.

A first way of measuring a temperature is to put a certain sensor in contact
with the system that we want to measure. This situation is represented in Figure
2.27, where Tx is the temperature of the system, Ts is the temperature of the
sensor and Ta the temperature of the environment. The goal, to obtain a correct
measurement, is therefore to make the temperature of the sensor Ts to be as
close as possible to the temperature of the environment.

From Table 2.2, we can draw an equivalent electrical circuit to the thermal
circuit that we are considering as in Figure 2.28. This is due to the fact that,
formally, the same equations are relating the quantities considered in the Table
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Thermal Electrical
Temperature [K] Voltage

Heat flow [W] Current
Thermal resistance [K/W] Resistance

Heat capacity [J/K] Capacitance
Q = ∆T

RT
I = ∆V

R

Q = CT
dT
dt I = C dV

dt

Table 2.2: Equivalence between thermal quantities and electrical quantities.

Figure 2.28: Equivalent circuit to the thermal problem.

and therefore every time we have a thermal problem we can draw its equivalent
electrical problem, that in principle should be easier to solve. Temperatures, in
fact are considered as voltages of certain nodes, thermal resistance Rsx and Rsa
are related to the thermal contacts, the capacitors Cx and Cs are related to the
finite heat capacities of the system and of the sensor and we have assumed the
environment to have an infinite heat capacity (thus being represented with an
ideal voltage source).

Figure 2.29: Equivalent circuit to the situation of isolated system and sensor.

The first approximated problem that we can consider is when we have an
isolated system and sensor, as in Figure 2.29. In this case, at a certain time the
switch will close and the sensor will be posed in contact with the system. Since
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the two temperatures can be assumed to be initially different:

Tx 6= Ts

after a transient (that takes a certain amount of time) the system will reach an
equilibrium at a certain final temperature:

T ′x = T ′s = Tf .

To solve this circuit, from an electrical point of view, we have to impose the
conservation of the charge before and after the transient:

Q = CV = CT

and therefore:

Qin = Qf → CsTs(0) + CxTx(0) = (Cs + Cx)Tf

we obtain the following final temperature:

Tf =
CsTs(0) + CxTx(0)

Cs + Cx
.

Again, from the equivalence between electrical quantities and physical quanti-
ties, the transient will have the following time constant:

τ =
Rsx

1
Cs

+ 1
Cx

.

It is important to note that the final temperature is not necessarily equal to the
initial temperature of the system: it can be even significantly different. This is
an unwanted effect, since we would like these two values to be at least similar.
Since the only parameter that we can modify is the capacity of the sensor Cs,
we would like to have this parameter as small as possible, thus to have a small
heat capacity of the sensor. It is important to note that the value of the thermal
resistance Rsx between the sensor and the system will not affect the static value
of the temperature; it will only modify the transient. To obtain a fast transient,
therefore, we would like to have a small time constant and this implies a small
value of this thermal resistance.

We can then consider the case in which also the environment is present but
the system is assumed to have an infinite thermal capacitance. In this case, we
can write the voltage generator Ta as the series between a voltage generator
Ta − Tx and a voltage generator Tx. Applying then the superposition principle,
we can write that:

Ta − Tx = 0 → Tf1 = Tx

while, on the other hand:

Tx = 0 → Tf2 = (Ta − Tx) · Rsx
Rsx +Rsa

.

This means that the final temperature will be the sum of these two partial final
temperatures:

Tf = Tx + (Ta − Tx) · Rsx
Rsx +Rsa
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Figure 2.30: Equivalent circuit when the environment is present and the system
has an high thermal capacitance.

and, therefore, the second term is actually the error with respect to the quantity
we would like to measure. The minimization of this error intuitively leads to have
a large ratio Rsa/Rsx and this means that we would like to have a bad thermal
contact between the sensor and the environment and a good thermal contact
between the sensor and the system to improve the accuracy of the sensor. In
this case, the time constant of the transient will be:

τ = Cs · (Rsx‖Rsa) .

Therefore, we can translate these ideal requirements in real devices as it follows:

• the small heat capacity of the sensor Cs can be obtained using small
sensors;

• the small thermal resistance between the sensor and the system can be
obtained through a good thermal contact, thus maximizing the contact2

are between them and, for solids, using good thermal grease;

• the large thermal resistance between the sensor and the environment can
be obtained using the correct sensor connections, thus designing sensors
with long and narrow connections, with a low thermal conductivity (for
example, using stainless steel) and good electrical conductivity.

2.4.1 RTD

We can now start our overview on different temperature sensors. The first sen-
sors that we will study are called Resistance Temperature Detectors (RTDs)
and they exploit the variation in the resistance of certain metals with temper-
ature. They can provide highly accurate results, with a minimum detectable
temperature difference that goes from 0.1 ◦C to 0.0001 ◦C, and they are usu-
ally adopted in the temperature range between 14 and 1200 K. In general, in
a metal the resistance increases with the temperature due to the fact that the
probability of a scattering event between an electron and a phonon increases.
We can thus expand the dependence of the resistance in power series:

R = R0

(
1 + α1T + α2T

2 + · · ·+ αnT
n
)

2Note that this requirement seems to be in contrast with the previous one.



126 CHAPTER 2. SENSORS

observing from Figure 2.31 that in general this relationship can be approximated
as linear over a quite large range of temperatures. In this interval where we can
assume to have a linear dependence, the sensitivity of the device will be related
to the slope of this curve.

Figure 2.31: Temperature dependence of the resistance of a few common metals.

We can thus define the so called temperature coefficient of the resistance
TCR as:

TCR =
1

R0

dR

dT

∣∣∣∣
R0

and it will be related to the sensitivity of the sensor. In the interval in which
the variation of the resistance with the temperature is linear, we can write this
value as:

α = TCR =
1

R0

∆R

∆T

and in general this holds between 100 ◦C and 0 ◦C. In Table 2.3 are reported a
few temperature coefficients of resistance with the corresponding linearity range.
From this Table, it is possible to observe that for pure platinum this linearity
range is pretty large, thus making it a quite common choice for Resistance
Temperature Detectors. Moreover, we can note that the temperature coefficients
are in general quite small.

Metal Temp. range ( ◦C) TCR ( ◦C−1)
Pt [−200,+850] 3.85 · 10−3

Ni [−100,+200] 6.72 · 10−3

Cu [−100,+250] 4.27 · 10−3

W [−100,+400] 4.8 · 10−3

Table 2.3: Temperature coefficient of resistance and linearity interval for a few
metals.

In general, platinum is the mostly used metal for Resistance Temperature
Detectors. Its first advantage, in fact, is that it is inert from a chemical point
of view and this is particularly important when we are working at extremely
high temperatures, where a lot of chemical reactions are thermally activated,
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possibly leading to the chemical contamination of the sensors. Moreover, it has
a large enough temperature coefficient of resistance, even though it is smaller
than the one of other materials, and its resistance-temperature relationship is
almost linear over a large range of temperatures. Last, the fabrication process
can be in general free from strains and the resistance R resulting from it is only
weakly dependent on the strain. The main disadvantage is that it is extremely
expensive. In general, these kind of sensors are built in order to have a fixed
resistance at the reference temperature of 0 ◦C, for example equal to 100 Ω
(thus giving the PT100 Resistance Temperature Detectors) or to 1000 Ω (in
this case, we have the PT1000 Resistance Temperature Detectors); this value of
resistance can in general be controlled during the manufacturing process.

Figure 2.32: Wire-wound Resistance Temperature Detectors.

From a practical point of view, a first way in which these devices can be
built is the so called Wire-wound Resistance Temperature Detectors, that are
represented in Figure 2.32. In these devices, a small sensing platinum wire (in
general with a diameter between 7 and 50 µm) is wound around a cylindrical
ceramic mandrel. This wounding must be non-inductive: this means that we do
not want to create loops around the mandrel, otherwise the system will have
a certain value of inductance and thus it will be sensitive also to magnetic
fields. Therefore, we want to reduce as much as possible the area of the loop
and this can be done coupling the wire with itself and then wounding the two
different ends of the same wire together around the insulator. The mandrel and
the wire are then usually covered with a thin layer of material that will provide
an electrical insulation and a mechanical protection of the device. The whole
device (that can be approximately of the size of the mandrel) has a length
between 2 and 3 cm, with a diameter of the mandrel between 1 and 5 mm. The
disadvantage of these devices, however, is that they are in general extremely
sensitive to vibrations and mechanical shocks, therefore a better variation is
represented by the coil suspension Resistance Temperature Detectors.

An example of coil suspension RTD is represented in Figure 2.33. In these
devices, a small coil of fine platinum wire is assembled into small holes inside
a cylindrical ceramic mandrel. In each device, we have a pair of these coils.
These coils are supported by a ceramic powder that is needed to stabilize the
structure from a mechanical point of view; both ends of the mandrel are sealed.
The ceramic powder, therefore, will allow the expansion and contraction of the
platinum wire, thus reducing the effects not only of vibrations and mechanical
shocks but also the effects of strains. Typically, these device have a length be-
tween 10 and 30 cm and a diameter between 5 and 6 mm. These kind of devices
are suitable for many applications, but surely not for all: due to their quite big



128 CHAPTER 2. SENSORS

Figure 2.33: Coil suspension Resistance Temperature Detectors.

dimensions, they will not be suitable for measuring local temperatures, where
smaller sensors will be needed. However, they can provide a large contact area
between the sensor and the system and, depending on the application, this might
be a significant advantage.
Note that, in this case, since the platinum wire is not directly attached to the
mandrel, the thermal expansions and contractions of the mandrel and the con-
sequent strains will be much less relevant in coil suspension RTDs with respect
to wire-wound RTDs.

Figure 2.34: Thin-film RTDs.

A much smaller alternative to the previous devices are the thin-film RTDs,
that are represented in Figure 2.34. In these devices, that are built using the
same techniques usually adopted for thin-film strain gauges, a thin film of plat-
inum is deposited onto a ceramic substrate and then it is etched, leaving the
element pattern, that is finally covered with a glass material to protect the de-
vice from humidity and contaminants. In general, the length of these devices is
between 1 and 10 mm, with an height between 1 and 2 mm: they are thus much
smaller than the previous sensors. This gives some advantages: first of all, we
are now able to sense very localized temperatures (while in previous detectors
we were averaging them). Then, these devices have a very small thermal capac-
itance, thus having a small time constant, being particularly fast sensors. Last,
due to their small size they are not expensive.

2.4.2 Thermistors

The idea underlying these devices is similar to the one beneath RTDs, but
in this case we are using different elements. In particular, now we are dealing
with transition metals oxides, such as chromium (Cr), cobalt (Co), copper (Cu),
manganese (Mn) and nickel (Ni), that will show a semiconductor-like behaviour.
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They are characterized by a strongly non-linear resistance-temperature charac-
teristic, but with a quite high temperature coefficient of resistance, that can be
either positive (thus being indicated as PTC) or negative (NTC). In general,
only negative temperature coefficients (NTCs) are useful for sensing applica-
tions, while PTCs will have other uses.
Either from the Maxwell-Boltzmann or the Fermi-Dirac statistics, we know that
the carrier density in a semiconductor (or in an oxide behaving similarly) can
be related to the exponential of the temperature through suitable coefficients.
This dependence is reflected in the resistance-temperature characteristic of these
devices, that can be written as:

R(T ) = R(T0)e
B
(

1
T −

1
T0

)
.

Figure 2.35: Resistance-temperature characteristic of certain thermistors.

It is important to note that, due to this strongly non-linear characteristic,
the same minimum detectable change in resistance, when centred across two dif-
ferent regions of the curve, will give a different minimum measurable variation
in temperature. This means that the resolution of the sensor is not constant:
given a minimum measurable value ∆R, the associated temperature variation
∆T will depend on the temperature T . Depending on the applications, this
might or might not be a useful effect. In general, the reference value for the
resistance of such a device is referred to a temperature of 25 ◦C and the asso-
ciated resistance can vary, depending on the temperature, between 100 Ω and
100 kΩ.
From the definition of temperature coefficient of resistance TCR that we have
previously given:

TCR =
1

R0

dR

dT

∣∣∣∣
R0

substituting the expression for the exponential temperature dependence of the
resistance we can obtain:

TCR = α = − B

T 2
.

Typical values for this coefficient are between −3 and −5 · 10−2 ◦C−1, thus
being approximately one order of magnitude larger than what we had in RTDs.
Therefore, for the same temperature variation a thermistor will give rise to
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a larger signal, thus allowing us to perform the detection using a standard
Wheatstone bridge with just one active element. NTC thermistors are generally
used between −50 ◦C and 150 ◦C, with the upper limit that can be extended
up to 300 ◦C for some glass-encapsulated units.

Figure 2.36: Bead thermistors.

From a practical point of view, a first way of creating these devices is repre-
sented by bead thermistors, that can be observed in Figure 2.36. In these devices,
around two parallel wires of platinum is placed a certain mixture of metal ox-
ide and binder. When this material condenses around the wires, it forms some
beads. The obtained strand is then sintered, allowing the contacts to form in-
timate bonds with the thermistor. These beads are then cut depending on the
desired geometry and coated. Each bead will have a size approximately equal
to 1 mm.

Figure 2.37: Surface contact thermistors.

An alternative that can be adopted using thin-films technology are surface
contact thermistors, that are represented in Figure 2.37. They are in general fab-
ricated by layer deposition (tape-casting on a chip or compressed metal powders
in disks), with the following creation of metal contacts (being applied either by
spraying, painting or sputtering and then being fired onto the ceramic body).
These devices are much smaller than 1 mm and there exist also leadless versions
for hybrid- or surface-mount types.

PTC thermistors, on the other hand, have a resistance R that increases
with temperature, on the contrary with what we had with the thermistors that
we have previously studied. This means that their temperature coefficient of
resistance is positive:

TCR > 0.

However, they are almost never used as sensors, since they are largely unstable,
have a weird behaviour above the Curie point and have an extremely small
temperature range of linearity. They are obtained from polycrystalline ceramic
materials that are made semiconductive by the addition of dopants. They are
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Figure 2.38: Characteristic equation for a PTC thermistor.

generally used as overcurrents protections or heaters. In fact, in the case of an
overcurrent, the Joule effect increases the power dissipation in the circuit and,
therefore, also the temperature increases. At a certain temperature, however,
the resistance of these devices significantly increases, actually shutting down
the whole circuit before it is burned.

2.4.3 Sensor self-heating

Figure 2.39: Equivalent thermal circuit for self-heating.

In sensors, as in any other device in an electrical circuit, a current flowing
will lead to a certain power dissipation that is related to the Joule effect. This
generally leads to an increase of temperature of the circuit and, as we can
immediately understand, this is a particularly bad effect in temperature sensors,
representing a source of errors: this effect is called self-heating. To study it, we
can consider the equivalent circuit that is represented in Figure 2.39. Neglecting
the presence of the environment (and thus the right hand-side of the circuit):

Rsa →∞

by linear superposition, first switching off the infinite thermal capacitance of the
system Tx and then the self-heating power Ps, after a transient we can obtain
the following value for the temperature of the sensor:

Ts = Tx + PsRsx.
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Therefore, the term PsRsx will represent a source of error in our temperature
measurement: the so called self-heating error. The power dissipation in the sen-
sor, therefore, can be represented as a power flow from the sensor to the system.
Assuming for example to have a PT100 sensor through which flows the following
current:

I = 1 mA

with the following thermal resistance between the system and the sensor:

Rsx = 1 ◦C/mW

we can obtain that the sensor has a resistance Rs and thus it dissipates a power
Ps:

Rs = 100 Ω ⇒ Ps = 100 µW = 0.1 mW

thus giving the following self-heating error:

∆T = Ps ·Rsx = 0.1 ◦C.

This value seems to be pretty small, and for many applications it can be consid-
ered negligible, but it actually depends on the application we are considering.
Moreover, the considered values represent a pretty fair case: things can be much
worse in reality.
To reduce the self-heating error, one possibility is to improve the thermal con-
tact between the sensor and the system, thus lowering the value of the thermal
resistance Rsx. Alternatively, if this is not possible, we can try to reduce the
current I flowing through the sensor. This necessarily implies a reduction of
the bias voltage Vcc of the Wheatstone bridge used for this kind of sensor, thus
lowering the output signal of the bridge and possibly degrading its resolution.
Alternatively, it is possible to adopt a different perspective. In fact, since the
self-heating mechanism has a certain time constant that depends on the thermal
capacitance of the sensor Cs, instead of driving the Wheatstone bridge with a
DC voltage we can use as a bias voltage Vcc a rectangular wave signal (therefore,
an AC signal). If the time intervals in which the signal Vcc is at its high level
are smaller than the time constant for self-heating, the sensor will not have the
time to significantly modify its temperature due to self-heating:

∆t� RsxCs = τ.

The equivalent circuit, in this case, will be similar to the one represented in
Figure 2.39, with the addition of a switch in series to Ps. Every time the switch is
closed, therefore when Vcc is high, the system will be measuring the temperature
and thus it will be (slightly) self-heating, while when the circuit is open and the
bias voltage Vcc is equal to zero we will not have any current flowing through
the sensor.

2.5 Thermoelectric effect and thermocouples

Under the name of thermoelectric effects are grouped a large class of quite in-
teresting and difficult effects. From our perspective, we will focus only on the
Seebeck effect, that is exploited in a class of temperature sensors: the thermo-
couples.
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The Seebeck effect, as many physical effects, was accidentally discovered by T.
Seebeck in 1826. According to this effect, a temperature difference between two
conductors (or semiconductors) generates a voltage difference or a current flow.
Therefore, a thermal gradient translates in an electric field or in an electromo-
tive force, therefore in a voltage gradient. The vice versa occurs in the dual
phenomenon: the Peltier effect.

Figure 2.40: Physical picture of the Seebeck effect.

To understand the physics of this phenomenon, consider a certain slab of
a conductor (either a metal or a semiconductor), as it is represented in Figure
2.40, to which a certain temperature gradient ∆T is applied. From previous
courses on solid state physics, we know that the energy distribution of the
electrons is controlled by the Fermi-Dirac distribution, that depends on the
temperature. This means that at the hot end of the slab we will have an higher
probability of having electrons with high kinetic energy and a lower probability
of having electrons with a low kinetic energy, and vice versa at the cold end.
This means that, at the hot end of the slab, the electrons will have, on average,
an higher kinetic energy and they will tend to diffuse towards other regions of
the slab, included the cold side. This means that, at some point, the density
of the electrons in the material will be higher at the cold side than at the hot
side and, therefore, a certain electric field directed toward the cold end will
be established. In steady-state conditions, this electric field will be such that
the drift of the electrons toward the hot side of the slab due to the presence
of the electric field will be perfectly balancing the diffusion process due to the
difference in temperature between the two ends of the slab. Since the presence
of an electric field is always related to a voltage gradient inside the material,
we will have a certain voltage drop ∆V inside the material and thus, from the
direction of the electric field, the hot end of the conductor will be at an higher
voltage with respect to the cold one. From a microscopic point of view, we can
say that a gradient in the concentration of the electrons (that is responsible for
the electric field and thus the voltage difference) is able to compensate the effects
of a gradient in temperature. Considering Fermi-Dirac statistics3, in solid state
physics it is possible to calculate the average energy of the electrons, depending
on the temperature, as:

E =
3

5
EF

[
1 +

5π2

12

(
kBT

EF

)2
]

3This physical model and the following one that is used for explaining the Seebeck effect
in semiconductors have not been discussed in details during the lecture.
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and therefore, differentiating this relationship, it is possible to calculate the
variation of energy related to a variation ∆T of the temperature:

∆E =
∂E
∂T

∆T =
π2k2

BT

2EF
·∆T

that will be balanced by the electrostatic energy −q∆V . Equating therefore
these two relationships, we can define the Seebeck coefficient4 as:

S =
∆V

∆T
= −π

2k2
BT

2qEF

thus determining a relationship between the temperature gradient ∆T and the
voltage gradient ∆V . It is important to note that ∆V will be the voltage of the
cold side of the conductor, since in general the voltage of the hot end is taken
as a reference value.
From a more general point of view, the Seebeck coefficient can be defined as:

S =
dV

dT

and from the previous convention of the voltages its sign will be equal to the
sign of the voltage of the cold side with respect to the hot side. A few Seebeck
coefficients are reported in Table 2.4.

Metal S (µV/K) Metal S (µV/K)
Sb 42 Bi -68
Li 14 K -13

Mo 4.7 Pd -9
Cd 2.6 Na -6.5
W 2.5 Pt -4.5
Cu 1.6 C -2
Ag 1.5 Al -1.6
Ta 0.05 Pb -1.1

Table 2.4: Seebeck coefficients for a few reference metals at 0 ◦C.

The important point that we need to observe from this Table is that these
coefficients are in general really small and that it is possible to have a sign
difference between them.

Figure 2.41: Fermi-Dirac distribution plotted for different temperatures.

4Also called thermoelectric power, even though it is definitively not a power.
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To understand why this sign difference is possible, we need to consider the
Fermi-Dirac distribution that is represented in Figure 2.41. In particular, we
can observe that depending on the temperature we will have not only more or
less high-energy electrons that will diffuse from the hot end to the cold one, but
also that it is possible to have more or less low-energy electrons that can diffuse
from the cold end to the hot one. In the previous description, we have implicitly
assumed that an higher energy of the electrons were related to an higher kinetic
energy, therefore to an higher velocity and an higher mobility of the electrons
coming from the hot side, but cannot always be taken from granted. The sign of
the Seebeck coefficient S, therefore, is related to the energy dependence of the
diffusion coefficient and thus to the efficiency of the scattering mechanisms at
different energies. In metals with a negative Seebeck coefficient, the probability
of a scattering event is much higher for high-energy electrons than for low-
energy ones, and therefore the diffusion of the electrons will take place from
the cold side toward the hot side, determining the apparently strange sign of
the Seebeck coefficient. This presence of negative coefficients was completely
surprising at Seebeck’s time and, depending on the scattering mechanisms, it
has been satisfactorily described only after the development of the solid state
theory.

Semic. S (µV/K)
Se 900
Te 500
Si 435

Ge 300
PbTe -180

PbGeSe -2000 or +1700
BiTe -230

Table 2.5: Seebeck coefficient for some reference semiconductors.

In Table 2.5 are reported a few Seebeck coefficients for some semiconductors.
It is immediately possible to note that these coefficients are much larger than the
one we have obtained in metals; this is due to the fact that in metals the density
of carriers is fixed, while in semiconductors it will be exponentially dependent
from the temperature5.

We define thermocouples the sensors that exploit the Seebeck effect. A first
tentative of creating a thermocouple is represented in Figure 2.42. In this case,
we are connecting two points at different temperature:

T2 > T1

with a wire of a certain metal (A). Then, since we want to measure the voltage
drop across the two ends of this wire, we connect them to a voltmeter (a device
that is used for measuring voltage differences) with two wires of the same metal
(A). Also the voltmeter, being a physical device, will be at a certain temperature
T0 that, for example, we can assume to be between T2 and T1. Across the first
wire, connecting the hot and the cold regions, there will be a certain voltage

5A simple model for the calculation of the Seebeck coefficient in this case can be found on
the slides, even though it has not been discussed during the lecture.
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Figure 2.42: A first and not successful tentative of creating a thermocouple.

drop that is related to the Seebeck coefficient SA of the metal considered and
to the temperature difference between the two ends:

SA(T2 − T1) = SA∆T.

However, also the connections from T2 to T0 and from T0 to T1 will give, for the
same effect, a certain voltage drop, that we can write as:

∆V2 = SA(T2 − T0), ∆V1 = SA(T0 − T1).

Therefore, the voltage drop that we can measure with our voltmeter will be
equal to the voltage drop across the metallic wire minus the two drops related
to wirings of the voltmeter:

∆V = SA(T2 − T1)− SA(T2 − T0)− SA(T0 − T1) =

= SA(T2 − T1)− SA(T2 −��T0 +��T0 − T1) = 0.

Therefore, we have obtained that this device, in this configuration, will not
measure any voltage regardless of the temperature T0 at which we have placed
the voltmeter. Therefore, we need to change the setup in order to be able to
measure a certain voltage difference.

Figure 2.43: Drawing of a thermocouple.

To change the previous device, we can assume, as in Figure 2.43, to use a
different metal (B) for wiring the hot and cold ends of the wire (A) to the volt-
meter. This second metal, therefore, will have a different Seebeck coefficient SB .
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From the previous reasoning, therefore, the voltage difference that is measured
across the voltmeter can be written as:

∆V = SA(T2 − T1)−∆V2 −∆V1 =

= SA(T2 − T1)− SB(T2 − T0)− SB(T2 − T0) =

= SA(T2 − T1)− SB(T2 −��T0 +��T0 − T1) =

= (SA − SB) · (T2 − T1) = SAB∆T.

In this way, therefore, we are actually observing a voltage drop that is pro-
portional to the difference between the hot and cold temperature through the
difference of the Seebeck coefficients. This means that for any given thermocou-
ple A-B we need to know the difference between the two Seebeck coefficients.

Figure 2.44: Regardless of the position of the voltmeter, a thermocouple will
give the same voltage drop.

Summing up, a circuit made with just one conductor will not generate any
voltage drop regardless of the temperature gradient, as well as a circuit made
with two different conductors will not generate any voltage drop if there is not
any temperature gradient: the only way of obtaining a voltage drop is to use
different materials whose ends are at different temperatures. In this case, the
thermocouples can be considered similar to sources of electromotive force, since
regardless of the position of the voltmeter we will always obtain (if present) the
same voltage drop. If we close the loop without placing any voltmeter, a current
I will flow through this loop, generating a magnetic field (that can be sensed)
and dissipating some energy over the small (but finite) resistances of the metals.
Considering the last equation that we have written, from it we can derive the
law of intermediate temperatures:

V = SAB(T2 − T1) = SAB(T2 − T0 + T0 − T1) =

= SAB(T2 − T0)− SAB(T1 − T0)

that states that if the voltage drops can be related to a known reference tempera-
ture T0, then we are able to compute the electromotive force for any temperature
difference ∆T . Analogously, we only need to know the temperature T1 to deter-
mine the dependence of the Seebeck coefficient on the second temperature T2.
Moreover, this relationship is valid also if the Seebeck coefficient is a function
of the temperature:∫ T2

T1

SAB(T ) dT =

∫ T0

T1

SAB(T ) dT +

∫ T2

T0

SAB(T ) dT.

Alternatively, we can derive the law of intermediate metals:

V = (SA − SB)∆T = (SA − SM + SM − SB)∆T =

= (SA − SM )∆T − (SB − SM )∆T
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that states that if the electromotive forces with respect to a reference electrode
are known, they can be used to compute the electromotive force for any couple
of metals. Again, also this relationship is valid if the Seebeck coefficient is depen-
dent on temperature. However, due to the possibility of chemical modifications
at the junctions between the metals, this last law will hold only as a first order
approximation, while the law of intermediate temperatures will have a broader
validity.

Figure 2.45: A measurement with a thermocouple.

We can now study how it is possible to perform a measurement from a
practical point of view. The first thing that we need to make sure is that the
soldering metals, that are represented as dots in Figure 2.45, are placed at the
same temperature T1 or T2 depending on their position: this will make us sure
of the fact that they will not generate any additional voltage drop. Moreover,
the voltmeter, that will then send a signal to an amplifier, must be connected
to the thermocouple by two wires of the same material C: their voltage drop
will cancel out, while if we were using two different metals these contributions
will lead to an additional voltage drop. The voltage measured by the voltmeter
can thus be written as:

∆V =((((
((SC(T1 − T0) + SA(T2 − T1) + SB(T1 − T2) +((((

((SC(T0 − T1) =

= SA(T2 − T1)− SB(T2 − T1) = SAB(T2 − T1).

The problem, now, is how it is possible to measure an absolute temperature
T2. In fact, from a thermocouple we are only able to measure the temperature
difference T2 − T1, therefore we need to know the value of T1 with a certain
accuracy (and stability) if we want to be able to measure the absolute value of
T2.

Figure 2.46: A thermocouple with an ice bath.

One of the first arrangements for measuring absolute temperatures is the
ice bath represented in Figure 2.46. In this case, the temperature T1 is kept at
the reference, stable value of 0 ◦C using an ice bath: this gives a constant offset
voltage that can be subtracted. However, this is impractical in modern systems,
since we need always a bath at a reference temperature.

A more recent scheme, that is represented in Figure 2.47, is the cold junction
compensation technique. In this circuit, the temperature T1, that is measured
through a thermistor or an RTD and its contribution is subtracted from the
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Figure 2.47: A thermocouple with a thermistor or an RTD.

output voltage of the thermocouple. Since we are actually measuring the abso-
lute value of temperature T1, we do not it to be stable, at least within a range
in which the adopted thermistor or RTD works properly. We are thus inferring
the absolute value of the temperature T2 from its relative measurement and
from an absolute measurement of the first temperature T1. A question, at this
point, may arise: why do not we directly measure the temperature T2 with a
thermistor or an RTD, instead of performing two measurements? In general,
this is because thermocouples are used for extremely low or high temperatures,
outside the usage ranges for thermistors and RTDs. Therefore, we can use these
device to measure a temperature that in general is the temperature of the envi-
ronment, thus being stable, in the linearity range of the device and in a region
in which we have a good enough resolution (that will be actually better in the
case of thermistors) and use this measurement as a reference for the one of the
extreme temperature T2. Moreover, the same temperature T1 can be used as
the reference temperature for many different thermocouples, thus allowing us
to have multi-point measurements, that are especially useful in industrial envi-
ronments.
A few of considerations, when performing this kind of measurements, must be
taken into account. First of all, we want to measure an open-circuit voltage,
therefore the input impedance of the voltmeter or of the amplifier that is con-
nected to the thermocouple must be large. If this is not the case, we are actually
measuring the partition of the voltage related to the thermocouple over the series
of the input impedance Zin and the small resistances of the metals used, due to
the fact that a current will flow through the whole thermocouple, determining a
voltage drop across these resistances. Moreover, since we have previously demon-
strated that a good sensor must have a small thermal capacitance, we can use
thin thermocouple wires. However, these wires will give, from the second Ohm’s
law, and high value of the resistance and, consequently, an high contribution to
the noise: to counteract these effect we must keep the thermocouple as short as
possible and we must use very thick connection wires. Then, since the temper-
ature T2 that is measured through the thermocouple is generally quite high, a
lot of chemical reactions will be activated and accelerated by this temperature,
contributing to the chemical contamination of the metals of the thermocouple.
This will change the chemical composition of the junction between the two met-
als, de-calibrating the thermocouple over time due to a change in the Seebeck
coefficients. This means that, in general, thermocouples have a short lifetime
due to their exposure to an extreme environment and therefore a recalibration
process (whether it is possible) may be periodically needed. Last, several dif-
ferent types of thermocouples junctions are available: they might be grounded,
ungrounded or exposed.
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2.6 Summary and comparison

Before ending this section on thermal detectors, we can make a brief summary
of what we have seen, comparing the various types of thermal detectors.
In the case of thermocouples, we have seen that they are simple and rugged
sensors that are suitable for operating at high temperature. These are low cost
devices and have a very fast response (actually, the fastest among the other
devices) to a temperature change. On the other hand, the associated disadvan-
tages are that they are the lest stable and repeatable class of devices and that
they have a low sensitivity to small temperature changes, thus providing only
small signals. Moreover, they always need the measurement of a reference tem-
perature.
A possible alternative is represented by RTDs, that are the most stable over
time and the most accurate devices. However, they have an high cost, the slow-
est response among all the devices and a low sensitivity to small temperature
changes, thus providing only small signals.
The last class of devices is represented by thermistors, whose advantage is to
have an high sensitivity to small temperature changes, thus being able to pro-
vide large signals. However, they can work only in a limited temperature range
and they are particularly fragile.
A fourth possibility, that were not discussed during lectures, is represented by
infrared optical devices.



Chapter 3

Noise

3.1 Signal and noise in time and frequency do-
mains

In this second part of the course, we can now deal with what comes from the
two elements that we have previously studied, the sensor and the amplifier: a
signal. In general, in fact, we will obtain a small signal that is superimposed
over a large noise, therefore our goal is the reduction of this noise in order to
be able to retrieve the desired signal.
A signal is defined as a physical quantity (for example, in our case, it will gener-
ally be a voltage or a current) that varies with time and that contains a certain
amount of information. It is intrinsically defined as a deterministic quantity and
we can assume it to be described by its time or frequency behaviour. All ran-
dom or stochastic components of the signal will be considered as noise. Given a
certain signal x(t) in the time domain, it may be useful to study it also in the
frequency domain and, to pass from one domain to the other, we can define the
Fourier transform. In particular, we define the Fourier transform of the signal
in the angular frequencies domain as:

X(ω) =

∫ +∞

−∞
x(t)e−jωt dt

while in the frequency domain it will be:

X(f) =

∫ +∞

−∞
x(t)e−j2πft dt.

Once we have the signal in the frequency (or angular frequency) domain it
is possible to retrieve the signal in the time domain by means of the inverse
transform:

x(t) =

∫ +∞

−∞
X(ω)ejωt

dω

2π
=

∫ +∞

−∞
X(f)ej2πft df.

It is important to note that when we consider the frequency domain we have a
perfect duality between the Fourier transform and the inverse transform opera-
tion, while in the angular frequency domain there is a different constant factor.

141
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The Fourier transform of a signal leads us to a few properties that may be useful
when dealing with signals. The first one is the so called initial-value theorem,
that states that:

X(0) =

∫ +∞

−∞
x(t) dt, x(0) =

∫ +∞

−∞
X(ω)

dω

2π
=

∫ +∞

−∞
X(f) df.

Therefore, we are able to relate the DC component of a signal to its time integral
over the whole domain and, analogously, the initial value of the signal to the
integral of the whole Fourier transform of the signal. It is important to note
that these theorems are a direct and immediate consequence of the previous
definitions of Fourier transform and of inverse transform.
A second important property is represented by the time and frequency shift.
Assuming the following Fourier transform to be valid:

F [x(t)] = X(f)

then we can express the Fourier transform of a signal shifted in time as:

F [x(t+ τ)] =

∫ +∞

−∞
x(t+ τ)e−j2πft dt = but z = t+ τ

=

∫ +∞

−∞
x(z)e−j2πf(z−τ) dz = ej2πfτX(f)

where we have observed the last exponential term to be independent from the
integration variable z, thus being extracted from the integral. Analogously, anti-
transforming a signal shifted in frequency:

F−1[X(f + f0)] = e−j2πf0tx(t)

and we can obtain that we have also in this case multiplied the signal by an
exponential factor with a different sign with respect to the previous case.
A third set of properties are the so called scaling properties, both in the time
or in the frequency domain. Therefore, given again the usual signal:

F [x(t)] = X(f)

it is possible to demonstrate that:

F [x(at)] =
1

|a|
X

(
f

a

)
and therefore we can immediately observe that a narrowing in the temporal
domain is equivalent to a broadening in the frequency domain and vice versa.
In the particular case of the time reversal:

a = −1 ⇒ F [x(−t)] = X(−f)

and if we assume the signal in the time domain x(t) to be real, as it will usually
be, we obtain the complex conjugate of the Fourier transform:

x(t) ∈ R ⇒ F [x(−t)] = X∗(f).
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From this property, it is possible to demonstrate that if x(t) is even, also its
Fourier transform will be even:

x(t) = x(−t) ⇒ X(−f) = F [x(−t)] = F [x(t)] = X(f)

and also that if x(t) is real and even, also its Fourier transform is real and even.
Another important property is related to the convolution of two signals. Defining
therefore the following two Fourier transform of the signal x(t) and y(t):

F [x(t)] = X(f), F [y(t)] = Y (f)

defining the convolution product as it follows:

x(t) ∗ y(t) =

∫ +∞

−∞
x(τ)y(t− τ) dτ

it is possible to demonstrate that a convolution in the time corresponds to a
product in the frequency domain and vice versa:

F [x(t) ∗ y(t)] = X(f)Y (f), F [x(t)y(t)] = X(f) ∗ Y (f).

According the same definition of the Fourier transform of the signals, then, it
is possible to demonstrate also the so called Parseval’s theorem:∫ +∞

−∞
x(t)y∗(t) dt =

∫ +∞

−∞
X(f)Y ∗(f) df

and in the special case in which:

x(t) = y(t)

it gives: ∫ +∞

−∞
|x(t)|2 dt =

∫ +∞

−∞
x2(t) dt =

∫ +∞

−∞
|X(f)|2 df.

Another important property states that the Fourier transform of a gaussian
signal is again a gaussian signal in the frequency domain:

F
[
e−πσ

2
t t

2
]

= e−πσ
2
ff

2

= e
−π f

2

σ2
t

where the widths of the functions are related by the following uncertainty rela-
tionship:

σt · σf = 1.

This means that a broad signal in time will give a narrow signal in the frequency
domain and vice versa, with a certain relationship between the two widths. Since
it is possible to demonstrate that a similar property will hold for any other signal
and the associated Fourier transform and that, however, gaussian pulses are the
one for which the product of the two widths is smaller, we are now able to
estimate the minimum value of the bandwidth that is required for representing
a certain signal in the frequency domain.

To generalize the previous property, we can consider a generic signal rep-
resented in Figure 3.1 and the associated Fourier transform in the frequency
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Figure 3.1: A signal in the time domain or in the frequency domain and the
associated rectangular version.

domain, that we can assume to be represented in the same Figure. For the sake
of simplicity, it is possible to define two square signals, one in the time domain
and the other in the frequency domain, with an amplitude equal to the ini-
tial amplitude of the signal and of its Fourier transform and with a duration,
respectively T and B, such that the area under the curve is preserved:∫ +∞

−∞
x(t) dt = x(0) · T,

∫ +∞

−∞
X(f) df = X(0) ·B.

In this case, from the initial value theorem, we can write:

X(0) =

∫ +∞

−∞
x(t) dt = x(0)T

where the last equality holds from our definition of T , and analogously:

x(0) =

∫ +∞

−∞
X(f) df = X(0)Bf = x(0)TBf

where in the last equivalence we have substituted the previous equation. From
this last expression, simplifying common terms, it is possible to obtain that:

TBf = 1

or, in the angular frequency domain:

TBω = 2π.

In general, this will hold only as a first order approximation but, as we have
said before, it can be useful for estimating the bandwidth requirements.

3.2 Cross-correlation and autocorrelation

A particular class of signals is represented by the signals x(t) such that:

x(t) ∈ L2(R)

where L2 is the Lebesgue space of the functions whose integral of the square
modulus, according to the Lebesgue definition of integral, converges. These sig-
nals are called energy signals. Given two of such signals x(t) and y(t), it is
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possible to define the cross-correlation between these two signals as:

kxy(τ) =

∫ +∞

−∞
x(t)y(t+ τ) dt.

This is a time-dependent quantity and it measures the “similarity” between
the two signals considered as a function of their reciprocal time difference τ .
This function is useful since in many cases we approximately know the shape
of the signal coming from a certain sensor, while the associated unknown quan-
tities may be its amplitude, its arrival time and the noise superimposed to it.
Therefore, to evaluate how much this signal is similar to the reference, expected
signal, we can evaluate this function depending on the reciprocal time-delay.
From the definition of the cross-correlation, we can immediately demonstrate
the following property:

kxy(τ) =

∫ +∞

−∞
x(t)y(t+ τ) dt = but z = t+ τ

=

∫ +∞

−∞
x(z − τ)y(z) dz = kyx(−τ).

Moreover, the following two inequalities will hold:

|kxy(τ)| ≤
√
kxx(0)kyy(0), |kxy(τ)| ≤ 1

2
[kxx(0) + kyy(0)] .

In them, we can observe that we are calculating the cross-correlation of a signal
with itself: this quantity is defined autocorrelation. The autocorrelation of a
signal, therefore, will measure the similarity of a signal with a shifted replica of
itself, thus measuring the “predictability” of a signal over time. It is a real and
even function that can be defined as:

kxx(τ) =

∫ +∞

−∞
x(τ)x(t+ τ) dt

and it is possible to show that:

|kxx(τ)| ≤ kxx(0) =

∫ +∞

−∞
x2(t) dt = E

where E is the so called energy of the signal. This inequality seems to be quite
obvious: when the two signals are not delayed one with respect to the other
(τ = 0) they will be actually identical and, therefore, their cross-correlation
will be maximum. Moreover, it is important to note that the signal energy is
only proportional (with a proportionality constant that in general depends on
the signal considered) to the physical energy of the signal, but it is not strictly
speaking an energy (since its dimension is not Joules).

Comparing, as in Figure 3.2, the autocorrelation1 of a signal:

kxx(t) =

∫ +∞

−∞
x(τ)x(τ + t) dτ

1Note that in the previous definition the roles of τ and t where exchanged, but this does
not lead to any difference.



146 CHAPTER 3. NOISE

Figure 3.2: Autocorrelation (above) and convolution (below) of a signal with
itself.

with the convolution of a signal with itself:

x(t) ∗ x(t) =

∫ +∞

−∞
x(τ)x(t− τ) dτ

it is possible to observe that in one case we are comparing the signal with a
delayed version of itself for different delays, while in the second case we are
comparing the signal with a delayed an time-reversed version of itself: we are
thus performing two different operations, obtaining two different results. There-
fore, considering the expression for the autocorrelation:

kxx = kxx(−t) =

∫ +∞

−∞
x(τ)x(τ − t) dτ = x(t) ∗ x(−t)

and assuming to have a real and even signal, Fourier transforming the autocor-
relation we will obtain:

F [kxx(t)] = X(f)X∗(f) = |X(f)|2.

From this expression of the Fourier transform of the autocorrelation, if we then
apply the initial value theorem2, we can write the energy of the signal as:

E = kxx(0) =

∫ +∞

−∞
|X(f)|2 df

and from this expression we can define |X(f)|2 as the energy spectral density of
the signal. In fact, integrating it over the whole range of the frequencies we will
obtain the energy of the signal and, moreover, at a given frequency it will give
how much energy is carried by that frequency component of the overall signal.
A different class of signals is represented by power signals. These signals do not
belong to space L2:

x(t) 6∈ L2(R)

since their energy diverges. A classical example, in this case, are sinusoidal
signals, but also any other periodic signal. A possibility, in this case, is to restrict
our analysis only over a period (or a certain portion) of the signal, defining a
truncated energy signal as:

xT (t) =

{
x(t), ∀|t| ≤ T
0, ∀|t| > T

.

2Alternatively, this can be obtained by applying the Parseval’s theorem.
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For these truncated signals, it is possible to define the associated Fourier trans-
form XT (f) and the following autocorrelation function:

kTxx(τ) =

∫ +∞

−∞
xT (t)xT (t+ τ) dt

where, again, we can define the energy power density of the truncated signal:

F [kTxx(τ)] = |XT (f)|2.

Then, to retrieve the fact that the original signal is not truncated, in calculating
the autocorrelation we need to calculate the following limit:

Kxx(τ) = lim
T→+∞

1

2T
kTxx(τ) = lim

T→+∞

1

2T

∫ +T

−T
x(t)x(t+ τ) dt.

Calculating the Fourier transform of this autocorrelation, then, it is possible to
define the power spectral density of the signal S(f):

F [Kxx(τ)] = lim
T→+∞

1

2T
|XT (f)|2 = S(f)

and its meaning can be understood by applying the definition of autocorrelation
and the Parseval’s theorem:

P = Kxx(0) = lim
T→+∞

1

2T

∫ +T

−T
x2(t) dt =

∫ +∞

−∞
S(f) df.

In fact, the quantity in the first integral is the energy of the signal (that we
know to be infinite) that is divided by the time interval considered (that is
tending to infinite in the limit), thus giving the power P associated to the
signal. This power, then, will be equal to the integral over the whole frequency
range of a quantity that can be recognized to be the power spectral density.
Again, also in this case this power is not a physical power, since it will only
be proportional to physically defined quantities. The associated power spectral
density, analogously to the energy spectral density, will give the contribution of
each harmonic component to the power of the signal.
Summing up, in energy signals the energy is a finite quantity and thus the power
associated is identically equal to zero, while in power signals the power of the
signal is a finite quantity and therefore the energy associated to the signal tends
to infinity.

3.3 Random processes

Stochastic or random processes represent the time dependence of a random vari-
able and they are generally superimposed to a deterministic signal. An immedi-
ate example of a random process is represented by the current flowing through
a certain device, that will continuously undergo to random fluctuations. Given
therefore x a certain random variable and t the time variable, we can define a
random process as the probability density function p(x, t) that will depend both
on the random variable considered and the time or, alternatively, by the joint
probabilities:

p(x1, . . . , xn; t1, . . . , tn).
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At any given time instant, therefore, the process can be studied as a random
variable, while for any given random variable the process will be a deterministic
function of time, that will be called the realization. The stochastic nature of such
a process is evident only when we are considering different replicas of the same
system to describe a certain phenomenon: the measurement of that phenomenon
will undergo to various, unpredictable fluctuations.
A specific class of processes are the so called stationary processes, that are
independent from the time shift considered. In this case, indicating with x1,
x2, ..., xn the samples that we are investigating, we can observe that the joint
probability distributions for these samples are independent from the time shift:

p(x1, . . . , xn; t1, . . . , tn) = p(x1, . . . , xn; t1 + T, . . . , tn + T ) ∀n, t, T.

A certain time window, therefore, can be arbitrarily shifted in time without
changing the associated probability for a given event. As a consequence, we can
say that since the joint probability density functions are the same for any time
shift, this means that these probabilities are independent from time:

p(x, t) = p(x, t+ T ) ∀t, T ⇒ p(x, t) = p(x).

Considering therefore two different samples and expressing the time, in one, as
the time of the other sample shifted of a certain quantity τ :

p(x1, x2; t1, t2) = p(x1, x2; t1, t1 + τ), t2 = t1 + τ ∀t1

we can observe that the joint probability density function for these two samples
will depend, exclusively on the reciprocal time difference:

p(x1, x2; t1, t2) = p(x1, x2; τ)

that has been defined as:
τ = t2 − t1.

As we have done in many other courses, we can then define a mean value for a
certain random variable:

x̄ =

∫
xp(x) dx

and this is completely analogous to the definition of average value in stationary
processes, and a variance:

σ2
x =

∫
(x− x̄)2p(x) dx = x2 − x̄2.

It is important to note that, in principle, the probabilities p(x), involved in both
the definitions, are time-dependent quantities. However, in the case of stationary
processes, they will be independent from time, thus making also the mean value
and the variance independent from time. In the vast majority of the cases, we
will assume that the mean value of a certain random variable is identically equal
to zero:

x̄ = 0.

From signal theory, then, we can define a few tools that will be needed. In
particular, we define the autocorrelation as:

Rxx(τ) = x1x2 =

∫∫
x1x2p(x1, x2; τ) dx1 dx2
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where, since by definition we have that:

τ = t2 − t1

then the autocorrelation will be implicitly dependent from these times t1 and
t2. Only in the case of stationary processes, this dependence will be only on the
difference τ between them, as we have written in the previous definition.
We define then the covariance as:

Cxx(τ) = (x1 − x̄1)(x2 − x̄2) =

∫∫
(x1 − x̄1)(x2 − x̄2)p(x1, x2; τ) dx1 dx2

and also in this case the previous observation holds: this quantity will depend
only on the time difference τ if and only if we are dealing with stationary
processes.
In the general case, after a few calculations it is possible to show that:

Cxx = Rxx − x̄1x̄2.

In the same way, we are able to calculate the values when the two signals have
not a reciprocal delay:

τ = 0 : Rxx(0) =

∫
x2

1p(x1) dx1 = x2

Cxx(0) =

∫
(x1 − x̄1)2p(x1) dx1 = σ2

x.

Since we will generally consider processes with zero mean value, this means that:

x̄ = 0 ⇒ Rxx = Cxx.

Figure 3.3: Possible outcomes of four different amplifiers sampled at the same
time instant.

Even when the average value of a certain random variable is different from
zero, a measurement of this variable will show a certain disturbance that will
make the outcome of these measurements to be similar but not exactly equal to
the outcomes from any different measurement. We can then calculate an average
of these measurements and this can be done in two different ways: averaging
over an ensemble or averaging over time.
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The meaning of an ensemble average is shown in Figure 3.3. As an example, we
can consider the noise that is coming from four different amplifiers whose input
is grounded. Sampling the obtained waveforms for this noisy signal at a certain,
fixed time instant t0, the probability density function for a certain outcome
of the measurement will be the usual probability density function evaluated
at that time instant p(x, t0). Therefore, for any different amplifier the random
variables x1, x2, . . . , xn will have a different value and this can be plotted in
the histogram represented in Figure, thus determining the probability density
function at a fixed time instant.

Figure 3.4: Possible outcomes of an amplifier sampled at different time instants.

Alternatively, as it is represented in Figure 3.4, we can focus on a single am-
plifier x0 and observe it at certain, different time instants: this is what is called
a temporal average. In this case, therefore, we are obtaining the probability
density function for a certain random variable p(x0, t). Collecting this sampled
value as a function of time in an histogram, we have thus obtained another (and
in principle different) probability distribution function.
It is important to stress the difference between these two averages: in the first
case, we are sampling many, different amplifiers at a fixed time instant, while
in the second case we have fixed the amplifier that we are considering and we
have sampled it at different time instants. Are the two probability distribution
functions the same? In general, no: the ensemble average is usually different
from the temporal average, apart when we are dealing with ergodic processes.
Ergodicity, therefore, is a property of a particular class of systems (that are
called ergodic) in which the ensemble average x̄ is equal to the temporal aver-
age 〈x〉. From a mathematical point of view, the equivalence between these two
averages can be written as:

〈x〉 = lim
T→∞

1

2T

∫ T

−T
x(t) dt =

∫
xp(x) dx = x̄

and in analogous way for these processes the ensemble autocorrelation:

Rxx(τ) =

∫∫
x1x2p(x1, x2; τ) dx1 dx2

is equal to the temporal autocorrelation:

Kxx(τ) = lim
T→∞

1

2T

∫ T

−T
x(t)x(t+ τ) dt
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thus giving:

Rxx(τ) = Kxx(τ).

This means that, for all the moments, temporal statistics will converge to the
ensemble ones. Moreover, it is possible to demonstrate that all ergodic processes
are also stationary processes (thus giving sense to all the temporal averages that
we have written), while the opposite is not true.

Figure 3.5: A counterexample of a system that is stationary but it is not ergodic.

A simple counterexample of a system that is stationary but it is not ergodic
can be found in Figure 3.5. Consider the process:

x(t) = A, A ∈ [0, 1]

whereA is a random variable in the interval defined. We can immediately observe
that, from this definition, the ensemble average of x will be coincident with the
average of the random variable A:

x̄ = Ā.

Considering now a fixed realization of this system, for example a1 as it is repre-
sented in Figure, since it is independent from time it will be equal to the tem-
poral average for that realization. However, considering a different realization,
this temporal average will be different and, in general, any temporal average
will be different from the ensemble average:

〈x〉 = a1 6= 〈x〉 = a2 6= 〈x〉 = a3 6= · · · 6= Ā.

We have thus proven the existence of at least one stationary system x(t) that is
not ergodic.
A different, but useful perspective also when dealing with stochastic processes
is the frequency domain. In particular, since a single realization of the process
is, actually, a signal (that is defined just as a time dependent variable), its
Fourier transform will be well defined. Considering therefore xi(t) as a single
realization, thus being a power signal, we can deal with its truncated version
and then perform a limit, thus obtaining the following power spectral density
Si(f) for the single realization:

Si(f) = lim
T→∞

1

2T
|XT,i(f)|2.
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We can then observe that this power spectral density Si(f) is a random variable
that will depend on the realization considered, therefore calculating its ensemble
average:

S(f) = Si(f) = lim
T→∞

1

2T
|XT,i(f)|2

we define the power spectral density S(f) of the random process. From our
previous introduction to signals, we have defined the power spectral density of
a signal as the Fourier transform of the autocorrelation. Is this true also for
random processes? The answer is yes and it is stated in the so called Wiener-
Kintchine theorem. To prove it, we can try to calculate the inverse Fourier
transform of the power spectral density:

F−1[S(f)] =

∫
lim
T→∞

1

2T
|XT (f)|2ej2πfτ df =

= lim
T→∞

1

2T

∫
XT (f)X∗T (f)ej2πfτ df.

However, from the definition of Fourier transform:

XT (f) =

∫ T

−T
x(t1)e−j2πft1 dt1, X∗T (f) =

∫ T

−T
x(t2)ej2πft2 dt2

where, in general:
t1 6= t2

we can write:

F−1[S(f)] = lim
T→∞

1

2T

∫ ∫ T

−T
x(t1)e−j2πft1 dt1

∫ T

−T
x(t2)ej2πft2 dt2 e

j2πfτ df.

Switching time integrals with ensemble averages and observing that the only
random terms over which we are performing the ensemble average are x(t1) and
x(t2), while all the exponential are deterministic quantities for which we can
apply the usual properties of the exponentials, we can write:

F−1[S(f)] = lim
T→∞

1

2T

∫ T

−T

∫ T

−T
x(t1)x(t2)

∫
ej2πf(t2−t1+τ) df dt1 dt2.

From the temporal shift property of the Fourier transform, observing that in this
case in the last integral in the frequency domain we are calculating the inverse
Fourier transform of an exponential, obtaining a time shift Dirac’s delta, we
obtain:

F−1[S(f)] = lim
T→∞

1

2T

∫ T

−T

∫ T

−T
Rxx(t1, t2)δ(τ + t2 − t1) dt1 dt2

where we have recognized the definition of autocorrelation, and since the Dirac’s
delta is just sampling the previous function in a point where the argument of
the delta is zero:

F−1[S(f)] = lim
T→∞

1

2T

∫ T

−T
Rxx(τ) dt1 = Rxx(τ)



3.4. WHITE NOISE 153

since the autocorrelation function that we are integrating is independent from
the variable of integration t1, thus making the limit equal to the function itself.
We have therefore just proven that:

S(f) = F [Rxx(τ)]

therefore, also in random processes, the power spectral density can be obtained
as the Fourier transform of the autocorrelation. It is important to note that the
crucial step, in this demonstration, is the calculation of the following ensemble
average:

XT (f)X∗T (f)

using the definition of the Fourier transform for power signals and observing
which terms are actually random variables and which ones are deterministic
quantities.

Figure 3.6: A bilateral and an unilateral power spectrum.

In general, the power spectral density S(f) is real and even and it extends
from −∞ to +∞, therefore also the autocorrelation Rxx(τ) is real and even and
we can define a bilateral power spectrum Sb(f). However, in circuit calculations,
we are usually interested in positive frequencies, therefore a unilateral power
spectral density Su(f) is defined, extending from 0 to +∞ in the frequency
domain. Between the two power spectral densities, the following relationship
holds:

Su(f) =

{
2Sb(f) ∀f ≥ 0

0 ∀f < 0

as a consequence of the fact that the bilateral power spectral density is even. It
is fundamental to note that the previous demonstration of the Wiener-Kintchine
theorem holds only or the bilateral power spectral density:

F [Rxx(τ)] = Sb(f) 6= Su(f).

3.4 White noise

A particular kind of noise is the so called white noise. From a statistical point
of view, it is defined as a noise signal whose autocorrelation is equal to a Dirac’s
delta:

Rnn(τ) = λ · δ(τ).
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Figure 3.7: Autocorrelation and power spectral density for a white noise.

This means that the autocorrelation of this signal is identically equal to zero
for any delay τ different from zero:

Rnn(τ) = 0 ∀τ 6= 0

and therefore this process is completely uncorrelated with itself, thus not allow-
ing any prediction on it. From the Wiener-Kintchine theorem we can write the
power spectral density of this noise as:

Sn(f) = F [Rnn(τ)] = λ

and therefore the power spectral density is constant and different from zero all
over the spectrum of the frequencies. This is a direct consequence of what we
have said before: if the process is completely uncorrelated with itself, it will
be a completely unpredictable signal and this means that the power spectral
density of this signal will have an equal contribution from all the frequencies in
the process. Assuming the average of this signal to be equal to zero:

n̄ = 0

we can calculate its variance as:

σ2
n = n2 − n̄2 = n2 = Rnn(0) =

∫ +∞

−∞
Sn(f) df =∞.

This means that it is impossible, for a physical process, to be described through
a white noise: in fact, any physical process will always contain a finite amount
of energy.
We can thus try to approximate real noise terms as white noise on a limited
spectral (or temporal) range. It is possible to state the following uncertainty
relation between the time and the bandwidth of this real noise term: in fact, if
the autocorrelation is equal to zero only for big enough delays:

Rnn(τ) = λ · g(τ), g(τ) ' 0 ∀|τ | > τ0

then the power spectral density will be constant only in a limited range of
frequencies:

Sn(f) ' const. ∀|f | < 1

τ0
.

A first way of approximating a real noise term with a white noise is the so
called triangular approximation. In this approximation, the autocorrelation of
the noise is represented as a triangle extending from −τ0 to +τ0 and, making this



3.4. WHITE NOISE 155

Figure 3.8: Triangular approximation.

width tend to zero, we can immediately retrieve the Dirac’s delta that is typical
of a white noise. Calculating the Fourier transform of this autocorrelation term,
we obtain the spectral noise density for this signal:

F [Rnn(τ)] = Sn(f) = n2 ·
(

sin(πfτ0)

πfτ0

)2

that is represented, both in its bilateral and unilateral version, in Figure 3.8.
From the calculation of the average value of the square of the noise term in the
so called equivalent rectangle approximation:

n2 =

∫
Sn(f) df = n2τ0 ·

∫ (
sin(πfτ0)

πfτ0

)2

df = Sn(0) · 2fn

we can calculate the width of this equivalent rectangle as:

fn =
1

2τ0
.

This result is not surprising at all, since the equivalent rectangle to the triangle
representing the autocorrelation of the signal, if we want to preserve the area,
will be extended from −τ0/2 to τ0/2.

Figure 3.9: Rectangular approximation.

A different approximation is the rectangular one, that is represented in Fig-
ure 3.9. In this case, the autocorrelation of the signal is approximated with a
rectangle, thus obtaining, from the Fourier transform of this autocorrelation,



156 CHAPTER 3. NOISE

the following spectral power density:

Sn(f) = n2τ0
sin(πfτ0)

πfτ0

and also in this case we can use an equivalent rectangle approximation also for
this power spectral density:

n2 =

∫
Sn(f) df = Sn(0) · 2fn

thus obtaining the following width for the equivalent rectangle:

fn =
1

2τ0
.

If we want, in both cases, to approximate this behaviour with a white noise, we
can assume that the typical temporal behaviour of the system involves times
much larger than τ0 or, equivalently, in the frequency domain we must be dealing
with frequencies much lower than 1/τ0. It is then possible to remember that the
power spectral density was also defined as:

Sn(f) = lim
T→∞

1

2T
|XT (f)|2

where we are averaging over a square modulus, that should be positive. However,
considering for example the part indicated, in Figure 3.9, with a red arrow, we
can clearly observe that there are portions of the spectral power density that
are negative. What does it mean? This question is left to the student.

3.5 Thermal noise in resistors

We can now focus more specifically on the types of noise that we have to face in
electronics. The first kind of noise we will be dealing with is the thermal noise,
that was originally observed in the ‘20s in vacuum tubes technology.

Figure 3.10: Root mean square value of the voltage fluctuations depending on
the resistance and on the temperature of the conductor.

In Figure 3.10 are represented two dependencies originally obtained in the
first observation of the thermal noise. In particular, in a conductor we can have
certain voltage fluctuations whose root mean square value can be observed to be
linearly proportional to the resistance and to the temperature of the conductor
considered. Moreover, Johnson discovered that this noise term is almost white,
thus being constant at any frequency he could measure. Therefore, considering
for example a resistor without any voltage applied to its ends, this noise will
have a zero average and a root mean square value of these fluctuations with the
above dependencies.
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3.5.1 Nyquist derivation

Figure 3.11: Transmission line considered in Nyquist derivation.

The first explanation of thermal noise is the so called Nyquist derivation.
Consider, as represented in Figure 3.11, a circuit with two resistors, RI and RII .
If the two resistors are connected, the voltage fluctuations at thermal equilibrium
in one resistor will be completely identical to the voltage fluctuations in the other
one. At thermal equilibrium, therefore, the same power will be transmitted from
the first resistor to the second one and vice versa, giving a flow of current in
the two conductors. We can now suppose to add a lossless, adaptive and ideal
transmission line of length l and with a characteristic impedance R between
these two resistors. In this case, a travelling wave, related to these fluctuations,
will travel along the line and, if at a certain point the line is short-circuited over
itself, we are somehow “trapping” the energy into the line and we must have,
in it, some standing waves. These standing waves will be also called modes of
the circuit and, indicating with n the maximum order of these modes3, λ their
wavelength and l the length of this transmission line, the following relationship
will hold:

nλ = l, n ∈ N

where the following relationship between frequency f and wavelength λ, given
v the speed of the signal across the line, holds:

λf = v.

Analogously to what we do in Bloch’s theory in solid state physics, we can now
calculate the number of these modes from the previous relations:

n =
l

λ
=
l

v
f

and differentiating this relationship we can obtain the number of modes con-
tained in an infinitesimal interval of frequencies:

dn =
l

v
df.

From the equipartition theorem, since any mode will have two degrees of freedom
(an electric degree of freedom and a magnetic one), the energy E(f) associated
to a certain mode will be equal to kBT and, therefore, we can write the energy
contained in an infinitesimal frequency interval as:

E(f) df = kBT dn = kBT
l

v
df

3Thus being equal to the number of modes that are allowed in the line.
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thus being the energy transferred at a given frequency in the time interval
τ = l/v equal to a transit time of the line. Since the power density is defined as
the energy transferred per unit time at a given frequency f , it can be written
as:

P (f) df =
E(f) df

l
v

= kBT df

and therefore we have determined that the power density, from the equipartition
theorem, will be equal to kBT . Now, we need to relate this physically meaningful
quantity to some electrical parameters. A generic voltage fluctuation V will
generate a current:

I =
V

2R
→ I2 =

(
V

2R

)2

=
V 2

4R2

in the given circuit, thus dissipating a certain power over each resistor that, on
average, is equal to:

P̄ = RI2 = R ·

(
V 2

4R

)
=

∫ +∞

0

SV
4R

df

where we have assumed that the negative frequencies are not meaningful, thus
using an unilateral power spectral density. However, this last equation gives:

P̄ =

∫ +∞

0

SV
4R

df =

∫
P (f) df =

∫
kBT df

where P (f) is the power spectral density that we have previously defined. This
gives therefore:

SV
4R

= kBT → SV = 4kBTR

the power spectral density SV in terms of voltage of the noise that we have
defined, since:

V 2 =

∫ +∞

0

SV df.

As an example, we can consider the following resistor:

R = 1 kΩ

at room temperature, obtaining:

SV ' 1.66× 10−20 V2/Hz =
(

4.07 nV/
√

Hz
)2

where we have approximated this noise term as if it were a white noise, even
though this is not true. To understand whether this white noise approximation
is sufficiently good, we need to study the high-frequency behaviour of this power
spectral density. The starting point, in this case, is the Planck equation, that
describes the energy associated to an oscillator at frequency f at a certain
temperature T :

E =
hf

e
hf
kBT − 1
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and assuming:
hf

kBT
� 1 → f � kBT

h

it gives the following approximation:

E ∼ hf

1 + hf
kBT
− 1
∼ kBT

that is exactly the one that we adopted for evaluating, through the equipar-
tition theorem, the energy of an oscillator in the previous case. The previous
calculation, therefore, shows us that at room temperature the power spectral
density can be assumed to be white up to a frequency that is approximately
equal to 100 GHz. In all the applications that we will consider, we will be far
below this frequency, therefore we can approximate this noise contribution to be
white. From Quantum Mechanics, we know that to a quantum harmonic oscil-
lator should be associated also a zero-point energy; however, this contribution
can be generally neglected and therefore it is not included.

3.5.2 Brownian motion

A more intuitive derivation of the power spectral density of this noise term can
be obtained studying the random motion of the electrons in a conductor due
to the thermal energy. In fact, we can immediately observe that on average the
sum of the effects of the random motions of the electrons in a conductor will
be equal to zero, but in a certain time interval it is possible to obtain a value,
for example of a voltage related to these motions, that is slightly different from
zero, since we are dealing with a stochastic process. The starting point in this
case is the diffusion equation, also called Brownian motion equation:

∂n

∂t
= D

∂2n

∂x2

where D is the so called diffusion coefficient and n is the electron density. From
this equation, especially when dealing with large-scale diffusion processes (since
for electrons the limit we will consider is not really meaningful), the concen-
tration term at the initial time t = 0 can be associated to a Dirac’s delta,
completely concentrated in one point of the space, that will then spread all over
the domain while time goes by. In one of the important papers published by
Einstein in 1905, it is possible to demonstrate that the following relation holds:

x2(t) = 2Dt

and, moreover, that the spectral density of the difference in the speed of the
electrons S∆vx can be written as:

S∆vx = 4D.

The noise, therefore, will be a consequence of the random motion of the electrons
and, therefore, of the fluctuations of their velocity due to the thermal energy.
To understand how a single electron and the fluctuations in its velocity can
contribute to the presence of a current and thus of a voltage, we can consider a
single electron moving in a plane capacitor whose electrodes are both grounded.
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Assuming the electron to be moving from left to right with an axial velocity
vx, assuming 0 to be the coordinate of the left hand-side armature, x to be
the coordinate of the electron and L to be the coordinate of the right hand-
side armature, since the electron has a charge −q it will induce two spatial
charge densities on the armatures. In particular, the charge induced on the left
hand-side armature will be:

q
L− x
L

while the charge induced on the right hand-side armature will be:

q
x

L
.

When the electron is moving through this conductor, it will change its position
x and thus also the charges induced on the electrodes will change, resulting in a
current i flowing from one electrode to the other in the opposite direction with
respect to the motion of the electron:

i =
q

L
vx.

Differentiating this relationship, we obtain:

∆i =
q

L
∆vx

but since the speed of the electron is a random variable, we can write the
autocorrelation of the random variation of the current as a function of the
random variation of the velocity:

R∆i = ∆i(t)∆i(t+ τ) =
q2

L2
∆vx(t)∆vx(t+ τ) =

q2

L2
R∆v.

Calculating the Fourier transform of both sides of this equation, we can write
a new equation involving the power spectral densities and, since we know that
power spectral density associated to a variation of the speed of an electron:

S∆i =
q2

L2
S∆vx =

q2

L2
4D

we have obtained a relation linking the power spectral density associated to
variations of the current to the dispersion coefficient. Assuming now to have:

N = nSL

independent electrons, where n is the electronic density of the conductor, S
the surface of the previous electrodes (that will be the faces of a conductor)
and L the length along the direction of motion considered of the conductor
(or alternatively the distance between the electrodes), we can write the power
spectral density associated to the current of every electron as:

SI =

N∑
m=0

S∆i = N · S∆i =
q2

L2
4DnSL =

4nSq2

L

kBT

q
µ
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where we have summed all the single-electron contributions since we assumed
them to be independent and we have used the following definition that comes
from Einstein’s relation:

D

µ
=
kBT

q

where µ is the mobility of the electrons. However, remembering the definition
of the conductivity of a metal:

σ = qnµ

we obtain:

SI = 4kBT
σS

L

and since, from the second Ohm’s law:

R = ρ
L

S
=

1

σ

L

S

we obtain:

SI =
4kBT

R
.

This gives the following spectral density in terms of voltage:

SV = 4kBTR

consistently with what we have obtained in the previous derivation.

3.6 Shot noise and Poisson random process mo-
del

As we have seen in the previous section, the current in an electronic device can
be written, from a physical point of view, as:

I = qnvA

where q is the charge of the electron, n is the density of carriers, v its their
velocity and A is the area of the conductor observed. In this expression, only
two quantities can show significant fluctuations: the carrier density n and the
speed v. Fluctuations in the velocity of the electrons lead, as we have seen in
the previous section, to the so called thermal noise. Fluctuations in the carrier
density n, on the other hand, lead to a new source of noise that we can study:
the shot noise.
This kind of noise was first observed by W. Schottky in 1918, while he was
studying the current fluctuations in vacuum tubes. In particular, as we have
just seen, it is related to the fluctuations in the number of charge carriers,
rather than in their velocity.

As represented in Figure 3.12, we can consider one electron travelling through
the depletion region W of a semiconductor. Assuming v to be the speed of this
electron, then the associated current is constant and can be written as:

I =
qv

W
=
q

τ
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Figure 3.12: An electron travelling the depletion region of a semiconductor and
the associated current pulse.

where we have defined the transit time of the electron in the depleted region:

τ =
W

v
.

We will thus obtain a current pulse as the one represented in Figure, that will
be constant for the whole time τ in which the electron is travelling through the
depleted region, while it will be zero before the start and after the arrival of the
electron. We can now ask ourselves: what happens when we have more than one
electron travelling through this depleted region?

Figure 3.13: Current fluctuations related to six different electrons.

In Figure 3.13, we have a very small biased device. The associated transit
time of this device is:

τ = 100 ps

the average current of this bias is:

Ī = 10−10 A

and the average number of charge carriers per unit time interval will be:

n̄ ' 6.2 · 108 s−1.

This means that, in the time interval considered (approximately 10 ns), we are
observing the transit of about six electrons. As we can seen from the Figure,
while the average value of the current will be constant, in reality the current
term will show a series of peaks much higher than the average value due to
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the presence of different, independent current pulses related to the different
electrons flowing through the device. Averaging on these current fluctuations,
we will obtain again the average value of the current considered. This current
pulses, in general, are randomly located along the temporal axis, maybe even
overlapping one with the other, thus giving rise to some random fluctuations
and, therefore, to a noise term.

Figure 3.14: Current fluctuations related to sixty different electrons.

Increasing the average value of the current and therefore the number of
different electrons that are crossing the device in the time interval considered:

τ = 100 ps, Ī = 10−9 A, n̄ ' 6.2 · 109 s−1

as represented in Figure 3.14, an increased number of electrons will cross the
device, thus giving an increased number of pulses that can overlap one with the
other. The current will still have a certain average value (that will obviously
be higher than in the previous case), but also the current fluctuations will be
increased. It is important to note that the physical origin of this noise term is
completely different from the one of the thermal noise, that was related to the
fluctuations in the value of the speed of the electrons.

Figure 3.15: Current fluctuations related to six hundred different electrons.

Further increasing the average current and the number of electrons:

τ = 100 ps, Ī = 10−8 A, n̄ ' 6.2 · 1010 s−1

we can observe in Figure 3.15 that these fluctuations are even more significant.
To describe the whole process x(t), that is the current flowing at a certain time
instant t through the device, we can write it as the sum of all the different
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normalized4 current pulses h(t− tk) multiplied by the charge of each electron q:

x(t) =
∑
k

qh(t− tk).

Note that, in this description, tk is the arrival time of the Poisson process
and therefore it is a random variable (thus being related to the randomness of
the process) and that we can sum over all the different pulses only since we
are considering individual and independent5 (thus totally uncorrelated) single-
electron pulses. It is important to note that this signal will be a power signal
and, therefore, we can define the power spectral density for such a signal as:

S(f) = lim
T→∞

1

2T
|XT (f)|2.

In this definition, we have defined XT (f) the truncated Fourier transform of
x(t) for:

tk ∈ [−T, T ]

thus obtaining:

XT (f) = qH(f)
∑
k

e−j2πftk .

In this expression, we have clearly defined the Fourier transform of the shape of
the single pulse as:

H(f) = F [h(t)]

and the sum of the exponential terms is related to the fact that each one of
these pulses will have a different arrival time in the interval [−T, T ], thus being
shifted differently in time and giving rise to sum of various exponential terms.
Calculating therefore this average to obtain the power spectral density, we can
observe that the only randomly varying quantity will be this sum of exponentials
(every other quantity, in fact, is deterministic), therefore the ensemble average
will only involve the exponential terms, while other terms are constant and can
be moved out of the limit:

S(f) = q2|H(f)|2 lim
T→∞

1

2T

∣∣∣∣∣∑
k

e−j2πftk

∣∣∣∣∣
2

=

= q2|H(f)|2 lim
T→∞

(∑
k

e−j2πftk

)
·

(∑
m

ej2πftm

)
=

= q2|H(f)|2 lim
T→∞

1

2T

∑
k,m

e−j2πf(tk−tm).

At this point, we can split the sum in two different sums:

S(f) = q2|H(f)|2 lim
T→∞

1

2T

∑
k=m

e−j2πf(tk−tm)+

+ q2|H(f)|2 lim
T→∞

1

2T

∑
k 6=m

e−j2πf(tk−tm) =

= S(f)|k=m + S(f)|k 6=m .
4Therefore, with unitary area.
5This crucial assumption allows us to use Poisson statistics.
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and study them differently. It is important to note that this can be done due
to the linearity of the ensemble average: the ensemble average of a sum is the
sum of the ensemble averages. Studying the first term, we can observe that in
the sum for k = m all the exponentials will be equal to one, whose ensemble
average is equal to one:∑

k=m

e−j2πf(tk−tm) =
∑
k=m

1 =
∑
k=m

1 = N2T

and therefore we are just calculating the number of different values of k = m
we have; this will be equal to the number of independent electrons we have in
the time interval [−T, T ] of amplitude 2T , therefore it can be written as N2T .
This first term, therefore, can be rewritten as:

S(f)|k=m = q2|H(f)|2 lim
T→∞

N2T

2T
= q2n̄|H(f)|2 = qĪ|H(f)|2

where we have considered that:

n̄ = lim
T→∞

N2T

2T

is the average number of electrons in a unitary time interval and where:

Ī = qn̄

is the average current, since it is the average number of carriers per unitary time
interval multiplied by their charge. The second term, on the other hand, can be
demonstrated6 to be equal to:

S(f)|k 6=m = q2n̄2δ(f) = Ī2δ(f)

thus giving the following total, bilateral power spectral density:

S(f) = Ī2δ(f) + qĪ|H(f)|2.

Studying this expression, we can observe that in a random process, if its average
value is different from zero (for example, due to the addition of a constant) we
expect to obtain a power spectral density in which one term is related to the
fluctuations (and in this case, it is the second term), while the other is related
to the DC average value (that will be represented by a Dirac’s delta function).
In this case, since the average current is obviously different from zero, we need
to have a DC term associated to the average value.
Since then it is possible to demonstrate that:

H(0) =

∫
h(t) dt = 1

then the Fourier transform of the pulse H(f) will be approximately white up
to a certain high frequency. From the equivalent rectangle approximation, since
the transit time is τ , this white noise approximation will hold in the following
limit:

f � 1

τ
.

6This has not been explicitly demonstrated during the lectures, but it can be found in an
appendix to the slides.
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The unilateral power spectral density, therefore, will be white up to a frequency
equal to the reciprocal of the transit time, giving:

S(f) = 2qĪ

where the extra factor 2 is needed to pass from the bilateral to the unilateral
power spectral density.

3.7 Flicker noise

Figure 3.16: Spectral behaviour of the Flicker noise.

The last noise term that we will study is the flicker (or 1/f) noise. This
kind of noise was discovered by J. Johnson in 1925 while he was investigating
the shot noise in vacuum tubes and, then, it has been found in many different
electron devices. The name of this noise comes from the fact that it is similar
to a white noise at high frequencies, while at low frequencies it clearly shows an
1/f dependency.

Figure 3.17: Some examples of Flicker noise in geophysics.

This noise term, then, has been found in several different processes, even
completely uncorrelated with electronics. This means that this is a very general
process, that can be found almost everywhere; it is therefore very difficult to
develop a common theory or explanation for it, being intrinsically related to
the physical behaviour of all the phenomena. In Figure 3.17 have been reported
two examples from geophysics: on the left we can observe the levels of the Nile
river flood, while on the right the velocity of some oceanic currents, both as a
function of the frequency. In Figure 3.18, on the other hand, flicker noise has
been studied in music, depending on the different authors and types of music
considered.

A first, important property of the flicker noise that we can study is its scale
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Figure 3.18: Some examples of flicker noise in music.

invariance. Considering in fact its power spectral density to be equal to:

S(f) =
K

f

where K is a suitable constant, we can write the power P associated to this
noise in the bandwidth [fL, fH ] as:

P =

∫ fH

fL

S(f) df =

∫ fH

fL

K

f
df = K ln

(
fH
fL

)
and we can immediately observe that this power will exclusively depend on the
ratio between the two limiting frequencies of the bandwidth. As an example,
therefore, we can observe that the power of this noise between 0.1 and 1 Hz
will be exactly equal to the one between 100 kHz and 1 MHz, while the second
bandwidth is significantly large than the first one. This is completely different
from what we had in white noise, where the power in the second bandwidth
would have been one million times larger than the one in the first one. This
properties is due to the fact that the ratios between the two limiting frequencies
of the bandwidth are identical:

0.1 Hz

1 Hz
=

100 kHz

1 MHz
= 0.1

and it is called scale invariance. It will obviously not hold for every kind of
noise whose power depends linearly on the frequency. Another characteristic of
this kind of noise is that it diverges both in the high-frequency and in the low-
frequency limit. This can be immediately demonstrated from the expression of
the power associated to this noise:

P = K ln

(
fH
fL

)
=

{
→ +∞ if fH → +∞
→ +∞ if fL → 0

and this is a particularly problematic issue of this kind of noise. This was obvi-
ously not true for white noise, that is diverging only in the high-frequency limit.
Therefore, how it is possible to deal with these problems?
First of all, it is important to observe that a band-limited flicker noise is station-
ary. This would not be true if we were dealing with an unlimited bandwidth, but
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it can be arbitrarily limited or through filtering (that will define a bandwidth
and a power for this noise signal) or, as we will briefly see, as a consequence of
the physical properties of any system. From a practical point of view, in fact,
cut-off frequencies always occur. For the high-frequency limit, for example, we
can consider the response time of the system (that is in the order of 1 ps) as
the limit, obtaining a cut-off frequency approximately equal to 160 GHz, or the
time λ/c taken by light to cross an atom, that gives an approximate frequency
of 1021 Hz. For the low-frequency limit, the cut-off frequency is set by the ob-
servation time we are considering: for a one day observation, it will be 10−5 Hz;
for a one year observation, it will be 3 · 10−8 Hz; for an observation as long as
the age of the Universe, the cut-off frequency will be 10−17 Hz. These are clearly
exaggerated limits (in reality, the bandwidth will be much narrower), but are
useful for understanding that the previous limits can never be observed, since
the low-frequency limit will involve an infinite observation time, while the high-
frequency limit will require a zero time constant in the system response, that are
clearly impossible. In the worst case, therefore, using the previous exaggerated
estimates, the bandwidth will be extended for approximately 38 decades and,
therefore, the maximum power associated to the flicker noise will only be 38
times larger than the one in the bandwidth going from 1 Hz to 10 Hz.

Figure 3.19: Experimental results for finding a minimum cut-off frequency for
flicker noise.

Since every model for flicker noise predicts the existence of a minimum cut-off
frequency for flicker noise, several different experiments have been performed for
measuring it. However, this value is in general extremely small and, therefore,
it has never been observed. Two examples of these results have been reported
in Figure 3.19.

Figure 3.20: An MOS structure needed for studying the random telegraph noise.

In particular, we can study a model for the flicker noise in MOS structures,
as represented in Figure 3.20: the random telegraph noise (RTN). If this MOS
structure is suitably biased:

VS = 0, VG > 0, VD > 0
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it is possible to form a conductive channel below the oxide layer, thus going from
the source to the drain of the device. In this channel, then, we will have a flow
of electrons, thus giving a current that will flow from the drain to the source.
The problem, in this case, is that just above this conductive channel we have
an interface between an oxide (in particular, silicon oxide SiO2) and the bulk
semiconductor (in general, doped silicon Si). This kind of interfaces presents
many defects, in particular bonds that can accept or emit electrons, thus being
called traps. This means that it may happen that one of the electrons in the
conductive channel is captured (respectively, released) from these traps. From
an electrostatic point of view, nothing changes in the structure; however, this
will determine a random decrease (respectively, increase) in the current that is
flowing through the device. The capture and the emission of single electrons
from the oxide traps will have two different time constants τc and τe and the
fluctuations in the drain current will determine fluctuations in the threshold
voltage.

Figure 3.21: Random telegraph noise connected to the presence of a single trap.

Considering the presence of a single trap, as in Figure 3.21, this will deter-
mine some current fluctuations between a low threshold voltage level (in which
the trap state is empty and the current is higher) and an high threshold voltage
level (in which the trap state is filled and the current is lower). Therefore, these
current fluctuations are related to the catch and release of electrons from this
single trap state. Studying the power spectral density of this single-trap noise,
we can observe that it shows an 1/f2 dependency from the frequency, thus not
being a flicker noise.

If we now consider the presence of many different trap states in an MOS
device, each one with its own different pole in the power spectral density due to
the fact that each trap state has a different emission or capture time constant,
we can obtain the power spectral density in Figure 3.22. Since these traps are
independent one from the other, in fact, we can add the various different power
spectral densities, obtaining the 1/f dependency that is typical of the flicker
noise.
In semiconductors, therefore, the flicker noise is mainly related to the presence of
distributed capture and emission processes. This is the reason why MOS devices
have an high flicker noise: the presence of a silicon-oxide interface, that presents
a large density of defects, determines an high trap density. On the other hand,
JFET and BJT technologies will have better performances, since the capture
and emission processes will take place in the space-charge regions, not near to a
silicon-oxide interface, thus presenting a much lower density of trap states. The
flicker noise, therefore, will be an issue mainly in MOS amplifiers.
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Figure 3.22: Power spectral density of the random telegraph noise connected to
the presence of various traps.

3.8 Noise in linear circuits and OAs

After this introduction to noise, we are now able to study the effect of the noise
on linear circuits and operation amplifiers. In particular, therefore, we will study
a special class of systems: the linear and time-invariant (LTI) systems. This class
of systems is, in general, quite broad and it contains all the systems and circuits
that we have previously described.
The first properties of these systems is their linearity. It can be defined as the
fact that, if an input xi(t) produces an output yi(t), then the following discrete
sum of inputs over some coefficients ck:∑

k

ckxk(t)

will produce as an output the sum of the single output weighted on the same
coefficients: ∑

k

ckyk(t).

This means that the superposition principle holds. Generalizing even more, we
can say that a continuous sum of infinitesimal inputs, that is an integral:∑

c(τ)x(t, τ) dτ

will produce an analogous sum, with the same coefficients, of the outputs:∫
c(τ)y(t, τ) dτ.

The second peculiar property of these systems is their time invariance, that
states that a temporal shifted input will produce an output that is shifted in
time of the same time interval. Therefore, if x(t) is the input that produces an
output y(t), then feeding an LTI system with x(t+T ) as an input we will obtain
y(t+ T ) as an output.
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Figure 3.23: Impulse response of a linear and time-invariant system.

These two properties have an important consequence: a linear and time-
invariant system can be completely characterized by its impulse response h(t).
To understand its meaning, if we are feeding a certain system with an impulse
δ(t) at the input, we will obtain the impulse response h(t) of the system as an
output. Moreover, this quantity will control the response of the signal to any
system, not only to impulses, since any signal can be considered as a sum of
several different time-shifted delta signals.

Figure 3.24: The “sifting” principle.

To better understand what we meant in the previous sentence, we can try
to study the so called “sifting” principle. In particular, we can define an ap-
proximated delta function with unitary area δ∆ that is represented in Figure
3.24. It will be a rectangle of amplitude ∆ and height (from the unitary are
requirement) 1/∆, and this clearly leads to the following property:

δ∆(t) −−−→
∆→0

δ(t).

Given therefore a certain signal x(t), we can obtain a piecewise constant approx-
imation of this signal by evaluating it at different time instants a multiplying it
for the previously define approximated delta function:

x∆(t) =
∑
k

x(k ·∆)δ∆(t− k ·∆) ·∆.

Then, in the limit in which the approximated delta function tends to the delta
function, we can write:

x(t) = lim
∆→0

x∆(t) =

∫
x(τ)δ(t− τ) dτ

where the last integral is the convolution of the signal with a delta. This is
nothing but a property of the convolution operation: the convolution of a generic
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signal with a delta function is equal to the evaluation of the signal in the point
in which the argument of the delta function is identically equal to zero.
If this property holds, we can consider the output of a linear and time-invariant
system when we are feeding it with an x∆(t) piecewise constant signal. This
output, from the linearity property7, will be the superposition of the different
response to the various time-shifted approximated delta signals δ∆(t−k·∆), thus
being several time-shifted8 impulse responses, multiplied by suitable coefficients:

y∆(t) =
∑
k

x(k ·∆) · h∆(t− k∆) ·∆.

In the limit in which the approximated delta function tends to a delta function,
we can write:

y(t) = lim
∆→0

y∆(t) =

∫
x(τ)h(t− τ) dτ = x(t) ∗ h(t).

We have thus demonstrated that the output of a system for any given input
signal will be the convolution of this input signal with the impulse response of
the filter9, that is therefore also defined as the weighting function of the filter.

Figure 3.25: Interpretation of the impulse response of a filter.

To better understand the meaning10 and the usefulness of the impulse re-
sponse of a system, we can study the problem reported in Figure 3.25. In this
case, we are studying the circuit represented in the upper part of the drawing,
that is clearly a linear and time invariant system. Assuming therefore an impulse

7This is the important of the linearity assumption: it will allow us to write the output as
a linear combination of the responses to the different inputs.

8Note that this is a consequence of the time invariance of the system: since the output of the
system to a time-shifted input is a time-shifted output, we can properly define a time-shifted
impulse response.

9From now on, the word filter will be often used as a synonymous of linear and time-
invariant system.

10This kind of interpretation is strongly encouraged by the teacher, since it can be useful
for understanding more complicated mathematical properties that we will study later on.
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input δ(t−α1), we know that the output of the system will be a decaying expo-
nential11 that will be equal, from what we have previously said, to the impulse
response of the system:

h(t− α1) =
1

τ
e−

t−α1
τ .

Assuming now to evaluate the contribution of this impulse at time α1 to the
output at time tm, we can write it as:

w(α1) = h(tm − α1).

If the input is a more complicated signal, we can then consider it as a series
of delta functions, each one with a different amplitude and a different temporal
position α and study the effect of this signal on the output at time tm by
considering the weighting factor, for each one of these components, depending
on the position of the impulse α:

w(α) = h(tm − α).

We can therefore immediately observe that this weighting function will be equal
to the impulse response of the system shifted in time of tm and reversed and
it will be useful for calculating the contribution of a certain component of the
input related to time α on the output evaluated at time tm.
We can now try to study how a linear and time-invariant system reacts to noise.
In this case, since the input of the system is a random process, we can say
that also the output of the system will be a random process, that therefore can
be studied through its autocorrelation. In the more general case, in which the
process is not stationary, this autocorrelation will depend explicitly on both
time t1 and t2, therefore we can write:

Ryy(t1, t2) = y(t1)y(t2).

According to the definition of the output of a system as the convolution of the
input with the impulse response of the system, then, we can write it as:

Ryy(t1, t2) =

∫
x(α)h(t1 − α) dα ·

∫
x(β)h(t2 − β) dβ

and changing the position of the integrals, it can be rewritten as:

Ryy(t1, t2) =

∫∫
x(α)h(t1 − α)x(β)h(t2 − β) dα dβ.

Note that, in the previous calculations, we have considered that the ensemble
average is performed over all the different realizations but, since they are output
signals, we can write them using the impulse response of the system. However,
this impulse response is a deterministic quantity, therefore the only quantities
that will be affected by the ensemble average will be the input signal x(α) and
x(β). Remembering the definition of autocorrelation of a signal, this gives:

Ryy(t1, t2) =

∫∫
x(α)x(β)h(t1 − α)h(t2 − β) dα dβ =

=

∫∫
Rxx(α, β)h(t1 − α)h(t2 − β) dα dβ.

11In fact, the step response of this system is an increasing exponential, and the two are
obviously related one to the other.



174 CHAPTER 3. NOISE

Since the two impulse responses will depend only on α or on β, we can first
integrate on one variable, considering the other as a constant, and then integrate
on the other; recognizing the definition of a convolution product:

Ryy(t1, t2) =

∫
h(t2 − β)

∫
Rxx(α, β)h(t1 − α) dα dβ =

=

∫
h(t2 − β) [Rxx(t1, β) ∗ h(t1)] dβ =

= h(t2) ∗ [Rxx(t1, t2) ∗ h(t1)] = Rxx(t1, t2) ∗ h(t2) ∗ h(t1)

where we have considered that the convolution product satisfies the distributive,
associative and commutative properties.
If we now assume to have a stationary input noise (flicker noise would be the
only exception if it were considered on an unlimited bandwidth), defining the
reciprocal delay between the two signals:

τ = t2 − t1
since the output of a stationary input noise is stationary as well, we need to
calculate the following autocorrelation:

Ryy(τ) = y(t)y(t+ τ)

where:
t1 = t, t2 = t+ τ.

From the previous calculation, that was more general, we can directly write:

Ryy(τ) =

∫∫
Rxx(β − α)h(t− α)h(t+ τ − β) dα dβ

where we have considered that since the noise is stationary, the autocorrelation
depends exclusively on the reciprocal delay:

γ = β − α.

Changing variables, therefore:

Ryy(τ) =

∫∫
Rxx(γ)h(t− α)h(t+ τ − γ − α) dα dγ

and integrating first on α and then on γ we obtain:

Ryy(τ) =

∫
Rxx(γ)

∫
h(t− α)h(t− α+ τ − γ) dα dγ.

Applying the following change of variable:

z = t− α

we can obtain12:

Ryy(τ) =

∫
Rxx(γ)

∫
h(z)h(z + τ − γ) dz dγ

12Note that we have considered that, applying rigorously the change of variable, the internal
integral would have been:

−
∫
h(z)h(z + τ − γ) dz = −khh(τ − γ) = khh(τ − γ)

due to the symmetry of the autocorrelation function khh(τ − γ), that is even and real. Note
that this is due to the fact that we are dealing with the autocorrelation of a deterministic
signal and not of a stochastic signal, where things are more complicated.
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that gives, recognizing the autocorrelation of a deterministic signal and a con-
volution product:

Ryy(τ) =

∫
Rxx(γ)khh(τ − γ) dγ = Rxx(τ) ∗ khh(τ).

We have thus proven that the ensemble autocorrelation of the output is the con-
volution of the ensemble autocorrelation of the input with the autocorrelation
of the impulse response function. Assuming a stationary input noise, therefore,
the mean square value of this noise can be written as:

n2
y = Ryy(0) =

∫
Rxx(γ)khh(γ) dγ

while if the input noise is non-stationary also the output noise will be non-
stationary and we must use the more complicated complete expression:

n2
y(t) =

∫∫
Rxx(α, β)h(t− α)h(t− β) dα dβ.

In the frequency domain, as a consequence of the property of the convolution
and of the Fourier transform, considering a deterministic signal as an input and,
therefore, a deterministic signal as an output, we will obtain:

Y (f) = X(f)H(f).

On the other hand, if the input and consequently also the output are stationary
noises, applying the Fourier transform to the following relationship:

Ryy(τ) = Rxx(τ) ∗ khh(τ)

we obtain:
Sy(f) = Sx(f) · F [khh(τ)] = Sx(f) |H(f)|2 .

The mean square value of this noise, then, can be written as:

n2
y =

∫
Sy(f) df =

∫
Sx(f)|H(f)|2 df

and this expression could have been obtained also starting from the one that we
have previously proven:

n2
y = Ryy(0) =

∫
Rxx(τ)khh(τ) dτ

by means of the Parseval’s theorem.
A particular case is the one of white stationary noise, whose ensemble autocor-
relation can be written as:

Rxx(τ) = λ · δ(τ)

and therefore the noise at the output of the filter will have the following auto-
correlation:

Ryy(τ) = Rxx(τ) ∗ khh(τ) = λ · khh(τ).
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To obtain the previous expression, we have considered that the convolution of
a certain function with a delta function gives the evaluation of the function in
the point in which the argument of the delta is equal to zero. This clearly shows
that the output noise is no longer a white noise. From an intuitive point of view,
this is a consequence of the fact that the output of the system is a weighted
average of all the previous inputs, and since this will be true for any output at
any time, we will have a certain autocorrelation in the noise at the output of
the filter, thus not making it white. The mean square value of the noise, then,
can be calculated as:

n2
y = Ryy(0) = λkhh(0) = λ

∫
h2(t) dt.

Alternatively, the same analysis can be performed in the frequency domain,
starting from the power spectral density of the input white noise:

Sx(f) = λ

and calculating, using the previous formula, the power spectral density of the
output noise:

Sy(f) = Sx(f)|H(f)|2 = λ|H(f)|2.

Also in this case, we can immediately observe that the output noise is not a
white noise and we are filtering the frequencies with the function |H(f)|2, thus
enhancing some components and rejecting the others. Integrating this power
spectral density, we can obtain the mean square value of this noise:

n2
y =

∫
Sy(f) df = λ

∫
|H(f)|2 df

and observe that, as we have previously stated, the two relations for the mean
square value of the noise could have been directly related using Parseval’s the-
orem.

3.9 Noise factor, noise figure and signal-to-noise
ratio

Figure 3.26: A noisy amplifier and the equivalent noise representation.

At this point, we can study how the presence of noise affects the performances
of an amplifier. We can start from a general consideration: every component of
an amplifier has its own sources of noise. Therefore, considering an amplifier
whose input pins are grounded, we will obtain from this amplifier an output
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that is different from zero and that varies depending on all these noise terms. It
is clearly impossible to take explicitly into account all these sources of noise; we
need thus to find an alternative way of representing the noise that is affecting
the overall amplifier. This can be done, for example, as it is represented in Figure
3.26. In this case, we are considering a noiseless amplifier and we have connected
at its input pins an equivalent noise voltage generator v2

i and an equivalent noise

current generator i2i . Therefore, these two generators will give, at the output of
the noiseless amplifier, the same noisy signal that we would have obtained from
a real amplifier. Moreover, they can be used also for representing noise terms
for every input condition of our device.
A question may arise: why do we need two different generators, one for a voltage
and the other for a current? To understand it, we can consider only the presence
of the current generator i2i , neglecting the voltage one. In this case, if we assume,
as a special input condition, that we have short-circuited the two input pins of
the amplifier, we are easily getting rid of this noise term and obtaining zero
at the output of the amplifier, without any noise signal. On the other hand,
if we assume to have only the voltage generator v2

i we can observe that if the
two pins are two open circuits we will not have any current flowing through
the circuit and the two pins (that are connected, inside the amplifier, from the
input impedance of the amplifier) will be at the same voltage imposed by the
equivalent noise voltage generator; also in this case, we are obtaining zero at
the output of the amplifier, without any noise. Therefore, both the equivalent
noise generators are fundamental.
It is important to note that, in principle, these two parameters come form several
different noise sources in the various elements of the device and, from this reason,
they will surely be somehow (at least partially) correlated. However, in order
to be able to solve any practical problem, since we are not able to express
explicitly this very difficult correlation, we will neglect this correlation between
the different noise sources and we will assume them to be totally uncorrelated.

Figure 3.27: The equivalent noise representation of an amplifier to which we
have connected a certain signal.

We can now assume to have a certain signal at the input of our noisy ampli-
fier, that can be represented as in Figure 3.27 through the Thévenin equivalent
of the input network. We can thus add at the input of the amplifier a voltage
generator VS that will give the signal at the input of the amplifier, a source resis-
tance RS at the input of the amplifier and a noise equivalent voltage generator
v2
R that will be related to the thermal noise in the source resistor RS :

v2
R = 4kBTRS .
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Considering a sinusoidal signal at the input of the amplifier:

vS = VS cos(ωt)

and a certain frequency interval ∆f , we can immediately write the signal at the
output of the amplifier, that will be equal to:

Vo = AVS cos(ωt).

However, superimposed to this signal we will find, at the output, also a noise
signal that can be written, in the frequency domain, considering three different
noise sources:

• the thermal noise in the source resistance, whose power spectral density
(in terms of voltage) is:

SV R = 4kBTRS ;

• the equivalent voltage noise of the amplifier, whose power spectral density
is SV ;

• the equivalent current noise of the amplifier, whose power spectral density
is SI .

Therefore, the output power spectral density of the noise will be a linear super-
position of the power spectral densities at the input (assuming an infinite input
impedance) multiplied by the square of the amplification factor13:

SV o = SV RA
2 + SVA

2 + SIR
2
SA

2.

From the definition of the mean square value of the noise output signal, then,
we can write:

V 2
o =

∫
SV o df =

∫ (
SV RA

2 + SVA
2 + SIR

2
SA

2
)
df.

In this case, however, we have assumed the signal at the input to be at a very
precise frequency ω, therefore we can filter any other signal coming to the am-
plifier with a filter with a small bandwidth equal to ∆f centred around ω and,
assuming the power spectral density to be constant over this domain14 we can
calculate this integral as:

V 2
o =

(
SV R + SV + SIR

2
S

)
A2∆f.

It is important to note that this term that we have just calculated is a variance
and it is related to the noise; this means that the larger will be this value, the
larger will be the noise contribution superimposed to the signal.

A good parameter for evaluating the contribution of noise on a signal and
therefore the cleanness of a certain signal is the so called signal-to-noise ratio
S/N . It is defined as the ratio between the maximum amplitude of the signal

13In fact, we know that the power spectral density is proportional to the square of the noise
signal and, since the amplification factor will amplify this signal, it will be squared in the
power spectral density.

14This is not a trivial assumption: the white noise will be for sure constant, but the flicker
noise will show an 1/f dependency that makes this assumption relevant.
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Figure 3.28: Two examples of signal-to-noise ratio.

that we are dealing with and the root mean square value of the amplitude of
the noise15: (

S

N

)
out

=
maximum signal amplitude

noise rms amplitude
=

Vo√
V 2
o

.

From the examples represented in Figure 3.28 we can immediately see that
the higher is the signal-to-noise ratio, the smaller is the noise component as
compared to the signal and therefore the better is our device. Applying this
formula to the previous example, we can observe that:(

S

N

)
out

=
Vo√
V 2
o

=
AVS√

(SV R + SV + SIR2
S)A2∆f

=

=
VS√

(SV R + SV + SIR2
S)A2∆f

.

To evaluate the effect of the amplifier, we can now compare the signal-to-noise
ratio before the amplifier, where the only noise term is the thermal noise in the
resistance of the source: (

S

N

)2

=
V 2
S

SV R∆f

with the signal-to-noise ratio after the amplifier, where also the equivalent noise
generators of the amplifier have come into play:(

S

N

)2

=
V 2
S

(SV R + SV + SIR2
S)∆f

.

We can therefore immediately observe that the amplifier has reduced the signal-
to-noise ratio, because it has introduced its own noise that is related to the
power spectral density of the noise equivalent voltage generator and of the noise
equivalent current generator (this last one evaluated on the resistance of the
source). Amplifying a signal, therefore, we reduce its signal-to-noise ratio and
to evaluate this reduction we can define two new parameters: the noise factor and
the noise figure. The noise factor F is defined as the ratio between the square of

15Both evaluated at the output or at the input of a certain device.
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the signal-to-noise ratio at the input and the square of the signal-to-noise ratio
at the output of the amplifier:

F =

(
S
N

)2
in(

S
N

)2
out

.

In this particular case, it can be evaluated, from the previous expressions:

F = 1 +
SV (f) + SI(f)R2

S

SV R

where SV R is the power spectral density of the thermal noise in the source
resistance, that in principle, from the model that we have studied, is white:

SV R = 4kBTRS

while the power spectral densities of the equivalent current and voltage noise
generators will depend more or less significantly on the frequency. In an ideal
amplifier, the amplification process will not add any noise to the signal and
therefore the noise factor will be:

SV = 0, SI = 0 ⇒ F = 1.

In a real device, however, we will always have these noise sources, thus giving a
noise factor that is greater than one:

F > 1.

Moreover, since the power spectral density of the noise equivalent generators
depend on the frequency (since they include terms related to the flicker noise,
for example), also the noise factor of a certain amplifier will depend on the
frequency. It is then possible to observe that:

SV R = 4kBTRS ∝ RS

while at the numerator:
SIR

2
S ∝ R2

S

and therefore it will be possible to find an optimum value of the resistance of
the source for minimizing the noise factor. Making this dependence explicit:

F = 1 +
1

4kBT
·
(
SV
RS

+ SIRS

)
we can find the optimum value by imposing:

∂F

∂RS
= 0 → −SV

R2
S

+ SI = 0

thus obtaining an optimum resistance that is equal to:

RS,opt =

√
SV (f)

SI(f)
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Figure 3.29: Equivalent representation of a noisy operation amplifier and the
associated power spectral density.

and it will obviously depend on the frequency. An equally useful parameter that
can be used for characterizing the behaviour of an amplifier with respect to the
noise is the noise figure, that is simply defined as16:

NF = 10 · log10(F ) [dB].

We can now specialize these general considerations for the case of an op-
eration amplifier. In this case, we will have again one noise equivalent voltage
generator that is applied to one of the input pins, while we will have two noise
equivalent current generators, one for each input pin. These two current gener-
ators will have, at least in principle, the same power spectral density, but they
will be totally independent random processes, thus having a small (and consid-
ered negligible) correlation. The spectral densities of all these noise equivalent
generators, that are represented in the right hand-side of Figure 3.29, will con-
tain both a white component and a flicker one. At low frequencies, therefore,
the flicker component will be predominant over the white one, while at high
enough frequencies the white noise component will prevail. The frequency at
which these two components have the same magnitude and thus we are chang-
ing from a 1/f behaviour (related to the flicker component) to a constant one
(that comes from the white noise) is called the noise corner frequency fc and it
is a parameter of the device considered. This frequency will be useful for under-
standing the behaviour of the prevailing noise sources for a particular range of
frequencies. From an indicative point of view, we can say that the square of the
voltage noise power spectral density for the white noise

√
SV will be between 1

and 10 or 20 nV/
√

Hz for the BJT technology, while in the JFET and MOS it
is usually higher, between 20 and 30 nV/

√
Hz. On the other hand, the square of

the current noise power spectral density for the white noise
√
SI will be about

a few pA/
√

Hz for the BJT technology, while it will be lower, being only a few
fA/
√

Hz for the JFET and even lower17 for CMOS one. This difference can be
immediately explained if we consider that BJT devices have larger bias currents
with respect to the other ones. Considering the noise corner frequency, it is pos-
sible to observe that it is between one and 100 Hz for the BJT and the JFET

16Note that this definition is nothing but a conversion of the noise factor in decibels. In fact,
since the noise factor is the ratio between the squares of the signal to noise ratio, it will be
proportional to the ratio between the squares of two signals, thus being proportional to the
ratio between two powers, from which comes the factor 10 that is multiplying the logarithm.

17Sometimes, this value is so small that it is impossible to be measured.
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technology, while it is up to a few kilohertz or even more for MOS devices (even
though a few devices of this kind with a much smaller noise corner frequency
exist). This difference in the noise corner frequency can be immediately related
to the value of the flicker noise in the device we are considering. In the MOS
technology, in fact, the generation and recombination processes at the interfaces
between oxide and semiconductor are significantly increasing the importance of
the flicker noise in these devices, thus increasing also the frequency at which
the contribution of the flicker noise is equal to the contribution of the white
noise (that is constant and independent from the frequency). This makes the
noise corner frequency larger for MOS device than for BJT or JFET ones. A
few examples of the roots of the power spectral density with respect to voltage
and to current can be found, respectively, in Figure 3.30 and 3.31.

Figure 3.30: Root of the noise equivalent voltage power spectral density in dif-
ferent classes of devices.

Figure 3.31: Root of the noise equivalent current power spectral density in dif-
ferent classes of devices.

Figure 3.32: Buffer circuit considered.
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−

+

SV
RS

SISV R

SI

Figure 3.33: Buffer circuit where we added the noise equivalent sources.

We can now try to extend this comparison of the different operation amplifier
to the buffer circuit that is represented in Figure 3.32. Assuming that the input is
grounded and therefore that we do not have any signal at the output, adding the
noise equivalent sources as in Figure 3.33 and noting that the noise equivalent
current generator connected to the inverting pin will not have any contribution
to the noise on the output we can write the power spectral density of the output
as:

SV o = SV R + SV + SIR
2
S = 4kBTRS + SV + SIR

2
S .

We can plot these three different contributions as in Figure 3.34 and observe
that in different region we will have a different prevailing noise source.

SV R

SR

SIR
2
S log(f)

log(
√
SV o)

Figure 3.34: Different noise contributions in a BJT technology (in black) and in
a JFET/CMOS technology (in red). The prevailing contribution is represented
with solid lines.

Summing all the different contributions that are represented separately in
Figure 3.34, it is possible to obtain the smooth behaviour that is represented in
Figure 3.35. We can immediately observe, therefore, that there is a first region in
which the power spectral density of the noise on the output of a BJT operation
amplifier is lower with respect to the one of JFET and CMOS ones; then we
have an intermediate region in which the two noise contributions are similar;
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Figure 3.35: Comparison between two different technologies of operation ampli-
fiers.

last, we have a region in which the power spectral density of the noise is lower
for the JFET and CMOS technology.

3.10 Feedback and noise

|H|

log(f)f1 f2

Figure 3.36: The pass-band filter considered.

We can now consider explicitly the noise in feedback networks. In particular,
what will happen when we filter the noise? Assuming to have a pass-band filter
as the one represented in Figure 3.36:

H(s) =
sτ1

(1 + sτ1)(1 + sτ2)

we can investigate the effect of this filtering operation on the noise.
The first case we can consider is the one in which the noise at the input is
assumed to be white. In this case, the power spectral density at the input of the
system will be:

Sin = λ

and at the output of the filter it will be:

So = λ|H(ω)|2.

It is important to note that in a filter, since this is a physical system, we will be
dealing only with positive frequencies, therefore the power spectral densities we
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are considering are unilateral power spectral densities. Integrating this power
spectral density, we can write the mean square value of the output signal as:

V 2
o =

∫ ∞
0

So(ω)
dω

2π
= λ

∫ ∞
0

|H(ω)|2 dω

2π
=

= λ

∫ ∞
0

(ωτ1)2

(1 + ω2τ2
1 )(1 + ω2τ2

2 )

dω

2π

and after a few calculation we can rewrite the argument of this integral as:

V 2
o =

λ

2π

τ2
1

τ2
2 − τ2

1

∫ ∞
0

(
1

1 + ω2τ2
1

− 1

1 + ω2τ2
2

)
dω.

Since from basic calculus we know that:

d

dx
(arctan(x)) =

1

1 + x2

we can calculate this integral to be equal to:

V 2
o =

λ

2π
· τ2

1

τ2
2 − τ2

1

·
(

1

τ1
arctan(ωτ1)

∣∣∣∣∞
0

− 1

τ2
arctan(ωτ2)

∣∣∣∣∞
0

)
=

=
λ

2π

τ2
1

τ2
2 − τ2

1

(
π

2τ1
− π

2τ2

)
=
λ

4

τ1
τ2(τ1 + τ2)

.

Under the assumption of having a filter with a large band:

f2 � f1 → τ1 � τ2

we can write that:

τ1
τ2(τ1 + τ2)

=
1

τ2

(
1 + τ2

τ1

) ' 1

τ2

(
1− τ2

τ1

)

and this gives:

V 2
o '

λ

4

(
1

τ2
− 1

τ1

)
= λ

π

2
(f2 − f1)

where we have considered that:

f1 =
1

2πτ1
, f2 =

1

2πτ2
.

Note that since the power spectral density of the noise is constant, if we had
an ideal filtering in the band defined we would expect to have a mean square
value of the noise that is equal to λ(f2−f1). However, this filter is not a perfect
window, with an infinitely abrupt cut-off, therefore we need to take into account
the additional contribution of the ending portions of our band-pass filter. These
parts are responsible for the π/2 factor.
On the other hand, in the case of flicker noise18, the mean square value of the

18In the angular frequency domain, the associated power spectral density will be:

Sn =
K

f
=

2πK

ω
.
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output voltage can be written as:

V 2
o =

∫ ∞
0

So(ω)
dω

2π
=

∫ ∞
0

2πK

f
|H(ω)|2 dω

2π
=

=

∫ ∞
0

2πK

ω

(ωτ1)2

(1 + ω2τ2
1 )(1 + ω2τ2

2 )

dω

2π

and after a few calculation we can rewrite the argument of this integral as:

V 2
o =

K

2

τ2
1

τ2
1 − τ2

2

∫ ∞
0

(
2τ2

1ω

1 + ω2τ2
1

− 2τ2
2ω

1 + ω2τ2
2

)
dω.

Noting that the following equivalence holds regardless of the value of τ that we
are considering:

d

dω

[
ln
(
1 + ω2τ2

)]
=

2ωτ

1 + ω2τ2

exploiting the properties of the logarithm we can write this integral as:

V 2
o = K

τ2
1

τ2
1 − τ2

2

 ln

(√
1 + ω2τ2

1

1 + ω2τ2
2

)∣∣∣∣∣
∞

0

 = K
τ2
1

τ2
1 − τ2

2

ln

(
τ1
τ2

)

where the square root in the logarithm comes from the 1/2 factor that we had
in front of the integral. If the bandwidth of the filter is quite wide:

τ2 � τ1 ⇒
τ2
1

τ2
1 − τ2

2

' τ2
1

τ2
1

' 1

and this gives the expected proportionality19:

V 2
o ' K ln

(
f2

f1

)
.

Now, we want to assess the effect of a negative feedback on the performances
with respect to the noise, that can be measured either using the noise factor
F or the signal-to-noise ratio S/N . To do this, we can consider the following
simple example: the inverting amplifier that is represented in Figure 3.37.

Figure 3.37: Inverting amplifier considered.

First of all, we have to calculate the noise factor F in an open-loop case.
The noise sources of this network, therefore, will be the thermal noise in the

19In fact, since the power spectral density of the flicker noise is proportional to 1/f , we
expected to have for the mean square value of this noise a logarithmic behaviour with respect
to the frequency, if the filtering where perfectly abrupt.
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resistances R and RS (that we will represent with the equivalent current sources)
and the current and the voltage noise that are present in the amplifier. Cutting
the feedback at its output and connecting it to the ground, we can obtain the
network that is represented in Figure 3.38. In particular, noting that all the
current sources will be in parallel one with the other, we can sum them, obtaining
a single noise equivalent current generator whose power spectral density will be:

SIn =
4kBT

RS
+

4kBT

R
+ SI .

This last equivalence comes from the fact that the variances of the noise terms,
that are related to the power spectral densities, sum up when we are dealing
with uncorrelated processes.

Figure 3.38: Inverting amplifier in an open-loop configuration with the equiva-
lent noise sources.

Directly analysing this circuit, then, we can write the output power spectral
density in an open-loop configuration as:

SVo,OL = [SIn(RS‖R)2 + SV ] · |A(s)|2

while if we consider only the output noise that is related to the noise in the
source of the signal, thus being only the thermal noise in the source resistance
RS that generates a current (through the noise equivalent current generator)
that will flow through both RS and R:

SVo,OL,source =
4kBT

RS
(RS‖R)2 · |A(s)|2.

From the definition of noise factor, then, we can write it as:

FOL = 1 +
SVo,OL

SVo,OL,source
= 1 +

(
4kBT

R
+ SI +

SV
(RS‖R)2

)
· RS

4kBT
.

Figure 3.39: Inverting amplifier in a closed-loop configuration with the equiva-
lent noise sources.
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The closed-loop configuration of the same circuit is represented in Figure
3.39. From the analysis of the behaviour of this circuit, since we know that the
effect of the loop will be to divide the obtained quantities by |1 − Gloop|2, we
can write the power spectral density on the output as:

SVo,CL =
SVo,OL

|1−Gloop|2

while considering only the noise terms associated to the source of the signal it
gives:

SVo,CL,source =
SVo,OL,source
|1−Gloop|2

.

Again, from the definition of the noise factor, we can write:

FCL = 1 +
SVo,CL

SVo,CL,source

but since the two |1−Gloop|2 terms will cancel out, we can write:

FCL = 1 +
SVo,OL

SVo,OL,source
= FOL

and therefore the feedback will not affect the performances in terms of noise
with respect to the noise factor.
Assuming the flicker noise to be negligible20, we can try to compute the signal-
to-noise ratio in the open-loop case and in the closed-loop one. In this case,
assuming the input signal VS to be a step signal, we know that the behaviour of
the operation amplifier will be described by its gain A(s). This will give rise, due
to the presence of a pole in the operation amplifier, an exponential behaviour
toward the steady-state value of the output. To calculate the signal-to-noise
ratio, then, since we know that we have to take the maximum value of the
output, we will write it as the steady-state output voltage, that from the final
value theorem is equivalent to the DC gain of the operation amplifier:

Vo,OL = A0
R

R+RS
VS

Starting from the open-loop power spectral density that we have described be-
fore SVo,OL, then, we can write the mean square value of the output voltage
as:

V 2
o =

∫ ∞
0

SVo,OL df =
(
SIn(RS‖R)2 + SV

)
A2

0

∫ ∞
0

1

1 + ω2τ2
OL

dω

2π
=

=
(
SIn(RS‖R)2 + SV

) A2
0

4τOL

thus giving the following root mean square value of the output voltage:

√
V 2
o =

√
(SIn(RS‖R)2 + SV ) · A2

0

4τOL

20This is required in order to make the following computation easier.
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thus obtaining the following open-loop signal-to-noise ratio:(
S

N

)
OL

=
VS

R
R+RS

2
√
τOL√

SIn(RS‖R)2 + SV
= K ·

√
τOL.

Note that, in all the previous derivation, we have defined as τOL the time con-
stant of the open-loop pole of the operation amplifier.
However, as we have seen in Chapter 1.11.1 at page 68, closing the loop we are
modifying the position of this pole and, therefore, we can write the new time
constant of the closed-loop pole as τCL (since closing the loop we are lowering
the gain and enlarging the bandwidth). From the same theory, the output volt-
age in closed-loop can be written as the output voltage in open-loop conditions
divided by the steady-state variation associated to the loop gain:

Vo,CL =
Vo,OL

1−Gloop(0)

while the root mean square value of the output voltage can be written as:√
V 2
o =

√
SVo,OL(0)

|1−Gloop(0)|2
· 1

4τCL

from which, after a few calculations21, we can derive the following closed-loop
signal-to-noise ratio: (

S

N

)
CL

= K
√
τCL.

We can thus observe that the closed-loop signal-to-noise ratio can be seen as
the following product between the open-loop signal-to-noise ratio and another
term: (

S

N

)
CL

=

(
S

N

)
OL

·
√
τCL
τOL

that again from the theory at page 68:

τCL =
τOL

1−Gloop(0)

can be written as: (
S

N

)
CL

=

(
S

N

)
OL

· 1√
1−Gloop(0)

.

Since the loop gain Gloop is in general very large, we can observe that:(
S

N

)
CL

<

(
S

N

)
OL

and therefore the presence of a negative feedback loop will worsen the signal-
to-noise ratio.
Summing up, we have demonstrated that the presence of a negative feedback

21These calculations are long and they have not been discussed during lectures; they can
be found as an appendix to the slides given by the teacher (L12).
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will modify all the open-loop transfers of the same quantity, thus not affecting
the noise factor F . However, it will also widen the bandwidth of the system,
thus making it collect more noise and degrading the signal-to-noise ratio S/N . In
reality, however, the bandwidth of a certain circuit is generally set independently
from the feedback, since we have many other requirements that we have to
satisfy. This means that this change in the signal-to-noise ratio is misleading,
since the limiting factor will be the bandwidth of the signal, thus being the
only parameter that matters for the calculation of the signal-to-noise ratio. At
the end, this means that the presence of a negative feedback will not modify
significantly the performances in terms of noise.



Chapter 4

Signal recovery

4.1 Introduction

After having studied sensors, amplifiers and the problems connected to the noise,
we can try to deal with the problem of signal recovering and signal conditioning.
In general, the building blocks that are responsible for these operations are
placed after the amplifier, thus being the last part of the data acquisition system
that we have to analyse.
The problem, in this case, is that the signal coming from an amplifier is, in
general, not acceptable, with a very low signal-to-noise ratio. This means that we
need to be able to clean the signal from this noise increasing the signal-to-noise
ratio and this operation is generally called signal recovery (or conditioning).
Dealing with this stage of the data acquisition chain, we will discuss different
techniques, but in the time and in the frequency domain, that will be more or
less useful depending on the type of signal and on the type of noise considered.
We will first study how to deal with high-frequency noise (basically, white noise)
both in low-frequency signals and, then, in high-frequency signals. Then, we will
move to the study of the low-frequency noise (in this case, mainly the flicker
noise) and again we will first see the case of low-frequencies signals (that we will
approximate as constants or slowly variable) and then to the high-frequency
ones (that will be considered as pulses).
The first element that we can analyse, therefore, is the so called low-pass filter
(LPF), that will allow us to reduce the bandwidth of the noise just after the
bandwidth of the signal.

4.2 White noise

4.2.1 Low-pass filter

The first example of filter that we can study is the so called low-pass filter
(LPF), that is represented in Figure 4.1. From a temporal perspective, this
is a linear and time-invariant filter, therefore we can define its delta-function
response. From our previous knowledge of these networks, we know that the
delta-function response will be a decaying exponential with a time constant:

T = RC

191
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Figure 4.1: A low-pass filter.

that depends on the elements used in the circuit, thus giving:

y(t) = x(t) ∗ h(t) =

∫
h(τ)h(t− τ) dτ

where1:

h(t) =
1

T
e−

t
T u(t).

Alternatively, we could have considered that since the delta-function is the time
derivative of the step function, then the delta-function response will be the
derivative of the step response. In the frequency domain, the associated transfer
function will be:

H(s) = L{h(t)} =
1

1 + sT
.

We can now further study the behaviour of this filter in response to a signal in
the time domain. The simplest low-frequency signal that we can study is the
step:

x(t) = Au(t)

where A is the amplitude of this step. Since in the time domain the output of
the network will be the convolution of the input signal with the delta-function
response of the filter, we can write:

y(t) = x(t) ∗ h(t) =

∫ t

−∞
x(τ)h(t− τ) dτ =

∫ t

0

A

t
e−

t−τ
T dτ = A

(
1− e− t

T

)
where the integration is extended only on the interval in which both signals are
different from zero. We can thus identify the function h(t− τ) as the weighting
function of the filter, since it will weight differently, on the output at a certain
time t, all the contributions coming from the delta-functions at previous time
instants τ . This means that our low-pass filter has a sort of exponential memory,
weighting more the portion of the signal that is quite close to the time instant
considered on the output.

1Remember that u(t) is the step function, that is needed since this step response is well
defined only for t > 0.
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Figure 4.2: Weighting function and step input for a low-pass filter.

Calculating then the autocorrelation of the delta-function response of the
filter, from its definition:

khh(τ) =

∫ ∞
0

h(t)h(t+ τ) dt =
1

T 2

∫ ∞
0

e−
t
T u(t)e−

t+τ
T u(t+ τ) dt =

=
e−

τ
T

T 2

∫ ∞
0

e−
2t
T dt =

e−
τ
T

2T

and since this function must be an even function as a consequence of the fact
that it does not matter which one of the two delta-function responses is coming
first, we can write:

khh(τ) =
e−
|τ|
T

2T
.

Figure 4.3: Autocorrelation of the delta-function response of a low-pass filter.

We can now consider to have, at the input of our filter, a white noise signal;
then, from its definition:

Rxx(τ) = λδ(τ).

The autocorrelation of the output noise, from the previous calculation of the
autocorrelation of the delta-function response of the filter, can be written as:

Ryy(τ) = Rxx(τ) ∗ khh(τ) = λkhh(τ) =
λ

2T
e−
|τ|
T .

From this definition, we can write the mean square value of the noise at the
output of the filter as:

n2
y = Ryy(0) = λkhh(0) =

λ

2T
∝ 1

T
.

This means that the noise power is reduced when the time constant T of the
network is increased. In fact, in this case we are averaging the noise over a longer
time interval, thus getting closer to the true average value of the noise, that is
expected to be zero.
In the frequency domain, in the case of an input signal, we can consider a step
signal at the input:

X(s) =
A

s
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thus obtaining, at the output:

Y (s) = H(s)X(s) =
1

1 + sT

A

s
= A

(
1

s
− T

1 + sT

)
.

Transforming back from the Laplace domain, this gives:

y(t) = A
(

1− e− t
T

)
u(t)

and it is immediately possible to notice that this is exactly the same result that
we obtained from a time domain perspective.
Considering now the noise in the frequency domain, we know that the output
power spectral density of the noise can be related to the input power spectral
density of the noise through the square modulus of the transfer function of the
filter. Since we assume to have a white input noise:

Sx(ω) = λ

then we get:

Sy(ω) = Sx(ω) |H(ω)|2 = λ|H(ω)|2

and since the mean square value of the output noise is the integral over the
whole frequency axis of the power spectral density of the noise, we can write:

n2
y =

∫ +∞

−∞
Sy(ω)

dω

2π
=

λ

2π

∫ +∞

−∞

dω

1 + (ωT )2
=

λ

2πT
arctan(ωT )|+∞−∞ =

λ

2T

and we obtain, once again, exactly the same result that we have derived in a
time domain perspective. It is particularly important to notice that, from the
expression of the transfer function of the filter, it will be decreasing with the
frequency (above the frequency of the pole), therefore the output noise will not
be white but it will have a certain, finite bandwidth, since the power spectral
density goes to zero in the high-frequency limit. In the case of a signal, therefore,
the maximum allowed bandwidth is defined by the frequency of the pole, thus
giving:

BWs =
1

2πT

but what is the bandwidth of the noise? Using an equivalent rectangle approx-
imation, we can assume the power spectral density of the noise to be constant
and equal to its maximum value Sy(0) = λ over the whole bandwidth. Since this
equivalent rectangle must have the same integral of the original power spectral
density (in fact, the mean square value of the noise, that is the integral of these
quantities, must be the same when calculated with both methods), that is a
known quantity, we can impose:

λ2 ·BWn =
λ

2T

thus obtaining the following bandwidth for the noise:

BWn =
1

4T
=
π

2
BWs.
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Note that, therefore, the bandwidth seen from the noise is larger than the band-
width of the signal and this is a consequence of the fact that the filter is not
abruptly decreasing after the pole. In fact, it shows an 1/f behaviour, thus
giving a region in which the signal is attenuated (thus not being useful for it)
but in which we are still collecting some noise. From the previous calculations,
this region has been demonstrated to have an area equal to π/2. Increasing the
time T and moving to the left the position of the pole we are narrowing the
bandwidth over which the noise is collected.

Sy(f)

fBWn−BWn

λ

Figure 4.4: Power spectral density of the output noise and equivalent rectangle
approximation.

We can thus try to evaluate the improvement in the signal-to-noise ratio
that comes from this filter. A problem, however, arises. If we consider a truly
white noise at the input of our device, then the mean square value of this input
noise will tend to infinite and the signal-to-noise ratio at the input of the filter
will be identically equal to zero:

n2
x →∞ ⇒

(
S

N

)
x

→ 0.

We need thus to define a quasi-white noise2, this means a noise that is white
only on an equivalent bandwidth that is defined as3:

fn =
1

2Tn
, Tn � T, fn � fp =

1

2πT
.

In this case, assuming Vi to be the maximum value of the signal at the input
(and consequently also at the output) of the device, since the mean square value
of the input noise will be:

n2
x =

∫ +∞

−∞
Sx(f) df =

∫ +fn

−fn
λ df = 2λfn

we can write the signal-to-noise ratio at the input of the device as:(
S

N

)
x

=
Vi√
n2
x

=
Vi√
2λfn

= Vi

√
Tn
λ

where in the last equality we used the expression that links the bandwidth of
the input noise with the associated time constant. At the output, the signal

2To understand these requirements, consider the triangular approximation of the white
noise that has been previously discussed.

3Note that in this way the input noise power spectral density is flat over the frequency
range of interest.
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will have the same maximum amplitude Vi (since the gain of the filter is one)
while the mean square value of the noise has been shown, from the previous
calculations, to be equal to λ/2T , thus giving the following signal-to-noise ratio:(

S

N

)
y

=
Vi√
n2
y

=
Vi√
λ

2T

= Vi

√
2T

λ
∝
√
T .

From this last expression we can immediately see that the higher is the time
constant T of the network the more we are reducing the noise and thus we are
increasing the signal-to-noise ratio at the output of the filter.
The improvement in the signal-to-noise ratio can be directly evaluated by relat-
ing these two quantities:(

S

N

)
y

=

(
S

N

)
x

√
2T

Tn
=

(
S

N

)
x

√
fn
BWn

>

(
S

N

)
x

.

This factor, therefore, will quantify the improvement in the signal-to-noise ratio
that is connected to the use of this low-pass filter. Moreover, considering the√

2T/Tn factor it makes clear that we need to apply a filter whose time constant
T is larger than the correlation time of the noise. In fact, with this filter we are
averaging the noise and, if this signal is still correlated during our average, we
will obtain a non-zero result, while if we are integrating over a long enough
time it will be an uncorrelated signal, thus averaging at zero. In a frequency
perspective, the term

√
fn/BWn gives the fact that the bandwidth of the noise

after the filter must be smaller (actually, much smaller) than the bandwidth
of the quasi-white noise in order to have an improvement in the signal-to-noise
ratio.

Figure 4.5: Autocorrelation of the filter and of the quasi-white noise (above)
and power spectral density of the noise before and after the filter (below).

4.2.2 Time-variant filter

A different and more complicated possibility is represented by time-variant fil-
ters, in which the delta-function response is dependent from the time. In this
case, given an input signal x(t), the output signal will be the integral of the
input with a system response function w(t, τ):

y(t) =

∫ +∞

−∞
x(τ)w(t, τ) dτ
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where every contribution for t < τ will be identically equal to zero. In the special
case of a delta-function input:

x(τ) = δ(τ − τ0) → y(t) =

∫ +∞

−∞
δ(τ − τ0)w(t, τ) dτ = w(t, τ0)

and we can see that the function w(t, τ) is still the system response at time t
to a delta function that is applied at the time τ , but it is not the delta-function
response shifted and reversed as in the case of time-invariant filters:

w(t, τ) 6= h(t− τ)

since this quantity is separately a function of t and τ .

Figure 4.6: An example of time-variant filter.

As an example we can consider the time-variant filter that is represented in
Figure 4.6. In this case, the dependence on the time comes from the presence
of a switch S: when the switch is closed, the circuit is completely analogous to
a low-pass filter, thus having a usual exponential delta-function response, while
when the switch is open the value of the output will be set by the voltage drop
across the capacitor. We can thus study the delta-function response of this filter
depending on when the delta-function is imposed at the input of the filter. If the
delta-function is imposed when the switch is closed and if the switch remains
closed for the whole duration of the transient, then the network will exhibit the
usual exponential decay delta-function response, as in the case of a low-pass
filter. If the delta-function is imposed at the input when the switch is open,
since we do not have any voltage across the capacitor the output will stay a
zero for every time instant, regardless of the fact that in future time instants
the switch is open or closed.

A more complicated situation is the one represented in Figure 4.7, in which
a delta-function arrives at the input when the switch is closed, starting on the
output an exponential decay. Suddenly, the switch opens; this freezes the output
at its current voltage value, since the capacitor is charged, and the output
voltage will remain constant (at least ideally) for the whole time interval in
which the switch is open. When the switch closes again, the exponential decay
behaviour will start again from where it stopped. This makes clearer that the
delta-function response depends separately on the time instant t considered and
on the arrival time τ (or α in the Figure) of the delta-function. Fixing therefore
a certain time instant tm and considering the contribution, at that time instant,
of the various exponential decays for delta-functions imposed at different initial
times τ , we can obtain the behaviour of the weighting function as in Figure 4.8.

Note that, as expected, any delta-function arriving at the input when the
switch is open will give a zero contribution at time tm, from which the re-
gion in which the weighting function is identically equal to zero. Moreover, for
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Figure 4.7: Delta-function response of a time-variant low-pass filter.

Figure 4.8: Weighting function of a time-variant low-pass filter.

delta-functions arriving before the close-to-open switching event, since when the
switch is opened the output voltage is constant, the exponential behaviour of
the weighting function will restart exactly from the same value after the region
in which it is equal to zero. From another perspective, we have only added a re-
gion in which the weighting function is equal to zero in between the exponential
weighting function that we expect for a low-pass filter. Another possible repre-
sentation of the weighting function for a different switching event is represented
in Figure 4.9, thus making clearer that this weighting function depends both on
the arrival time of the delta-function considered and on the time considered for
studying the output.

From a more numerical point of view, we can now evaluate the response to
the noise of this filter. Since the filter is time-variant, the output noise will not
be stationary and we will have an explicit dependence of the autocorrelation of
the output noise on the time instants t1 and t2 used for evaluating the output.
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Figure 4.9: Weighting function of a time-variant low-pass filter for a different
switching event.

From the definition of the autocorrelation of the output noise, we can write:

Ryy(t1, t2) = y(t1)y(t2) =

∫∫
x(α)w(t1, α)x(β)w(t2, β) dα dβ =

=

∫∫
x(α)x(β)w(t1, α)w(t2, β) dα dβ =

=

∫∫
Rxx(α, β)w(t1, α)w(t2, β) dα dβ

where we considered that the ensemble average of a time integral is the time
integral of the ensemble averaged quantities, that the weighting function is,
actually, a deterministic quantity and that the autocorrelation of the input
noise is defined as:

Rxx(α, β) = x(α)x(β).

In this case, the mean square value of the output noise will be equal to the
autocorrelation of the noise when the two signals are evaluated in the same
time instant

n2
y(t1) = Ryy(t1, t1).

Note that, since the noise is non-stationary, the mean square value of the output
noise depends on time.
Assuming now a stationary input noise:

x(α)x(β) = Rxx(α, β) = Rxx(α− β)

and thus we can rewrite the autocorrelation of the output noise as:

Ryy(t1, t2) = y(t1)y(t2) =

∫∫
Rxx(β − α)w(t1, α)w(t2, β) dα dβ

where it is important to note that even if the input noise is stationary, the filter
is time-variant and therefore the output noise will be non-stationary. Defining
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the following variable:
γ = β − α, dγ = dβ

we can write:

Ryy(t1, t2) =

∫∫
Rxx(γ)w(t1, α)w(t2, α+ γ) dα dγ =

=

∫
Rxx(γ) dγ

∫
w(t1, α)w(t2, α+ γ) dα =

=

∫
Rxx(γ)kw12(γ) dγ

where we have defined:

kw12(γ) =

∫
w(t1, α)w(t2, α+ γ) dα.

In fact, if we could forget the fact that we are evaluating the weighting function
in two different time instants t1 and t2, this would be the time correlation of the
weighting function, since we are integrating the product of this function with
its temporally shifted replica. However, this correlation does not depend only
on the reciprocal shift γ but also on the time instants t1 and t2 and this is the
reason of the subscript 12.
Once we have calculate the autocorrelation of the output noise, it is easy to
evaluate the mean square value of the output noise in the case of a stationary
input noise:

t1 = t2 = t → n2
y(t) = Ryy(t, t) =

∫
Rxx(γ)kwtt(γ) dγ

where we have, from the previous definition, the following time correlation of
the weighting function:

kwtt(γ) =

∫
w(t, α)w(t, α+ γ) dα.

Again, this immediately shows that the output noise is non-stationary, even
though the input noise is stationary, due to the time-variant nature of the filter.
To study now the behaviour of a signal in the frequency domain, we can apply
the Parseval’s theorem, thus obtaining:

y(t) =

∫
x(τ)w(t, τ) dτ =

∫
X(f)W ∗(t, f) df

where we have defined:

W (t, f) =

∫
w(t, τ)e−j2πfτ dτ

the Fourier transform of the weighting function. However, the output signal in
the frequency domain:

Y (f) = F{y(t)}

cannot be defined in a simple way in the general case: it can be done only in a
few very specific cases.



4.3. GATED INTEGRATORS AND IMPROVEMENT OF S/N 201

Assuming to have a stationary input noise, again from the Parseval’s theorem
we can write the mean square value of the output noise as:

n2
y(t) =

∫
Rxx(γ)kwtt(γ) dγ =

∫
Sx(f)|W (t, f)|2 df

where the power spectral density of the input noise is the Fourier transform of
its autocorrelation and where we have defined W (t, f) as:

Sx(f) = F{Rxx(γ)}, |W (t, f)|2 = F{kwtt(γ)}.

Note that this result is quite similar to the one that we have obtained in the
case of time-invariant filters, except for the fact that W (t, f) is now a time-
dependent quantity.
In the case of a white stationary noise at the input, by definition its autocorre-
lation can be written as:

Rxx(γ) = λδ(γ)

therefore the mean square value of the output noise in a time-domain perspective
will be:

n2
y(t) =

∫
Rxx(γ)kwtt(γ) dγ = λ

∫
δ(γ)kwtt(γ) dγ = λkwtt(0) =

= λ

∫
w2(t, α) dα.

In a frequency-domain perspective, on the other hand, since the input white
noise is defined as:

Sx(f) = λ

we obtain:

n2
y(t) =

∫
Sx(f)|W (t, f)|2 df = λ

∫
|W (t, f)|2 df

where we can immediately observe that these two integrals are equal one to the
other as a consequence of the Parseval’s theorem.

4.3 Gated integrators and improvement of S/N

Figure 4.10: A gated integrator.
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A particular type of time-varying filter is the gated integrator, that integrates
the input signal for a finite time interval. This time interval, also called the
integration window, is determined by the commuting of two switches, one that
is indicated with S1 in Figure 4.10, the other that is in parallel to the capacitor
and that we will call S2. When S1 is open and S2 is closed, the output voltage is
identically equal to zero and we are not integrating the input. When we commute
both the switches, thus making S1 closed and S2 open, we start the integration
of the input signal. Another commutation of the two switches will determine
the end of the time window in which are integrating. Since the two switches
are always commuting together (when one is open, the other is closed and vice
versa), we can study the behaviour of the circuit only depending on the position
of the switch S1.

Figure 4.11: Weighting function of a gated integrator.

Since we know that the weighting function w(t, τ) is the system response at
time t to a delta-function applied at time τ , we can consider that the weighting
function will be identically equal to zero outside the integration window, when
S1 is open. When S1, therefore when we are in the gate, the output will be the
integral of the input and, since the integral of a delta function is a step function,
we will obtain the same output regardless of the arrival time of the delta function
and therefore the weighting function in this interval will be constant4 and equal
to the gain of the network K. Considering for example that the initial time of
the gate is:

t0 = 0

for the sake of simplicity, this weighting function can be written as the difference
between two step functions centred in different time instants:

w(t, τ) = K · [u(τ)− u(τ − t)] .

Changing the duration of the gate t, we are thus stretching the rectangle that
is represented in Figure 4.11.
To evaluate the signal response of this filter, we can write:

y(t) =

∫
x(τ)w(t, τ) dτ = K

∫ t

0

x(τ) dτ = Kt〈x〉

4It will be the sum of various steps with different initial part.
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where we explicitly took into account the expression of the weighting function
and the definition of time average of a signal:

〈x〉 =
1

t

∫ t

0

x(τ) dτ.

Defining the Fourier transform of the weighting function we have previously
defined, we can see that:

W (t, f) = F{w(t, τ)} = Kt sinc(πft)e−jπft

where we know that the Fourier transform of a rectangle is a sinc function
whose argument is πf and where the exponential term takes into account that
the rectangle we are considering is centred in t/2, having an additional phase
term:

e−j2πf
t
2 = e−jπft.

In particular, it is important to consider that we always have to be sure, when
calculating the Fourier transforms, that the following theorem holds:

W (t, 0) = Kt =

∫
w(t, τ) dτ

thus checking the zero frequency value. Therefore, from a frequency point of
view the output signal could have been written as:

y(t) =

∫
X∗(f)W (t, f) df

but since:
X∗(f) = X(−f)

we obtain:

y(t) =

∫
X(−f)W (t, f) df = Kt

∫
X(−f) sinc(πft)e−jπft df.

Figure 4.12: Behaviour of the filter in the frequency domain.

Considering the behaviour of the filter in the frequency domain that is repre-
sented in Figure 4.12, we can immediately note that we cannot use the following
expression:

Y (f) 6= X(f)|W (t, f)|
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that will hold only for linear and time-invariant filters. We can thus calculate
the autocorrelation of the weighting function as:

kwtt(τ) =

∫
w(t, α)w(t, α+ τ) dα

and the square modulus of the Fourier transform of the weighting function:

|W (t, f)|2 = |F{w(t, α)}|2 =
∣∣Kt sinc(πft)e−jπft

∣∣2 = K2t2 sinc2(πft)

and represent them as in Figure 4.13.

Figure 4.13: Autocorrelation of the weighting function and square modulus of
its Fourier transform.

To study now the output noise of the device, from a time domain perspective
we can write its means square value, under the assumption of having a white
input noise:

Rxx = λδ(γ)

as:

n2
y =

∫
Rxx(γ)kwtt(γ) dγ = λkwtt(0) = λtK2.

In the frequency domain, since from the definition of white noise:

Sx(f) = λ

we can write5:

n2
y =

∫
Sx(f)|W (t, f)|2 df = λK2t2

∫
sinc2(πft) df = λtK2

consistently with the Parseval’s theorem.
Also in this case, considering an equivalent rectangle approximation of the power
spectral density of the output noise, since it must preserve that area of the power
spectral density, that we have just calculated as the mean square value of the
output noise, we can write:

λK2t2 · 2BWn = λtK2 → BWn =
1

2t

5It is important to remember the following notable integral:∫
sinc2(πft) df =

1

t
.
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and this is the noise equivalent bandwidth of the gated integrator. Also in this
case, therefore, as the integration time t increases, we are narrowing this filter.
To compute the input and output signal-to-noise ratio, as in the previous case,
we can approximate the input noise as a quasi-input noise with a triangular
approximation of its autocorrelation on a time Tn � t, while the input noise
power spectral density will be constant and equal to λ on a bandwidth [−fn, fn]
that is defined from the following relation:

2fnTn = 1 → 2fn =
1

Tn
→ fn =

1

2Tn
.

In this case, from the result we have obtained in the previous sections, we can
write the input signal-to-noise ratio, assuming Vi to be the maximum value of
the input voltage, as:(

S

N

)
x

=
Vi√
n2
x

=
Vi√
2λfn

= Vi

√
Tn
λ
.

At the output of the filter, the output signal will be the integral of the input
one:

Vy(t) =

∫
x(τ)k(t, τ) dτ = KtVi

and thus it can be written as the gain multiplied by the maximum value of
the input voltage and by the width of the gate. Considering also the expression
of the mean square value of the output noise that we have just derived, the
signal-to-noise ratio at the output can be written as:(

S

N

)
y

=
Vy√
n2
y

=
ViKt√
λtK2

= Vi

√
t

λ
.

Rewriting the output signal to noise ratio as a function of the input one, we can
obtain: (

S

N

)
y

=

(
S

N

)
x

√
t

Tn
=

(
S

N

)
x

√
2t

2Tn
=

(
S

N

)
x

√
fn
BWn

.

This relationship makes clear that we have to integrate over gates whose dura-
tion t is much larger than the correlation time Tn of the input noise:

t� Tn

in order to have an average of the noise that is zero, since we are integrating
a totally uncorrelated signal. From the second expression, on the other hand,
we are obtaining that the bandwidth BWn of the output noise signal must be
much smaller than the bandwidth of the input noise.

We can now compare the bandwidth of a gated integrator with the one of a
low-pass filter. From the expression of a low-pass filter, its transfer function can
be written as:

1

1 + (2πfT )2
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Figure 4.14: Comparison of the bandwidth of a gated integrator with a low-pass
filter.

while for a gated integrator we have just shown it to be:

(Kt)2 sinc2(πft).

To be able to compare the two signal-to-noise ratio, we want the two filters to
have the same low-frequency gain with respect to a signal, thus making them
different only with respect to the noise, and this can be done by imposing:

Kt = 1.

Assuming then, for example:
t = T

we can study the equivalent rectangle approximation of these filters that is
represented in Figure 4.14. Assuming a white input noise, then the mean square
of the output noise will be proportional (through a suitable coefficient that is
related to the power spectral density of the input noise) to the integral of these
curves. We can thus observe that the gated integral is more noisy, as it can be
seen from the equivalent rectangle approximation. The equivalent output noise
bandwidth for these two filters therefore will be:

BWn(GI) =
1

2T
, BWn(LPF ) =

1

4T

and therefore, to achieve the same signal-to-noise ratio, we have to choose the
two integration times as it follows:

t = 2T.

In general, a low-pass filter is always present in an acquisition system to cut all
the unwanted high-frequency noise components, that are in regions in which we
will not have any signal. Gated integrators, on the contrary, are more specific
for certain applications and they can be used in particular when we are dealing
with fast signals such as pulses. In fact, short pulses will have, from the Fourier
theorem, a large bandwidth and therefore a low-pass filter will suppress also
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high-frequency components of the signal. A suitably triggered gated integra-
tor, in this case, is able to select only the time window in which we have the
pulse, thus significantly reducing the amount of noise that is collected after the
filter. Moreover, the gated integrators will present several zeros in the Fourier
transform of the weighting function, thus being able of completely suppressing
certain well-defined frequency components on the output:

fn =
n

t
.

This kind of filters, therefore, is used also to reject power supply disturbs or
interferences6.

Figure 4.15: A simplified scheme of a gated integrator.

A simplified version of a gated integrator is represented in Figure 4.15. In
particular, we have to add another circuit in order to trigger the window in
which we are integrating. The signal Vi, therefore, is coming to a discriminator
with a certain threshold Vth and, when the input signal is above the threshold,
a certain signal arrives through a variable delay to a control logic, that starts
the integration. However, the discriminator and the control logic introduce a
certain delay on the trigger signal, therefore, we need to add the same delay on
the input line. The problem, now, is that the delay introduced from the control
network is very difficult to calculate and, moreover, it may change depending on
various parameters. We thus add a big (surely bigger than the delay introduced
by the control network) and fixed delay on the input line and a variable delay
on the control network. By manually adjusting the variable delay on the control
network, is the possible to match the fixed delay on the input line and to obtain
a perfect synchronization of the input signal with the gate.

An example of input and output waveforms from a gated integrator is rep-
resented in Figure 4.16. In this case, the time interval of the gate TG can be
chosen in order to optimize the signal-to-noise ratio on the measurement we are
performing. For pulses, therefore, gated integrators are better, since they can
suppress the noise at any other time instant while collecting the pulse without
modifying it.
Several models of gated integrators are generally at our disposal. Typical gate

6Interferences, in fact, are due to other systems in which we might have switchings, cou-
plings and other effects. These effects are generally well localized in frequency, therefore if
they are strong enough they can be eliminated by properly choosing the integration time, as
it is often done in portable tools.
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Figure 4.16: Input and output waveforms from a gated integrator.

widths (that corresponds to the integration time) can go from one or two
nanoseconds to several microseconds (thus allowing the measurement of pretty
short pulses), while the gain, that gives an amplification of the signal, typically
ranges between one and 1000. Between two integration gates, then, a certain
time interval is required for resetting all the offsets, discharging the capacitors
and making the system ready for another measurement. This time interval is
generally called dead time and it is typically about a few microseconds. Many
other parameters, such as the linearity and the offset, might then be discussed
in the data-sheets of these devices.

4.4 Boxcar averagers and ratemeters

Figure 4.17: The output of a gated integrator in presence of a fast pulse and a
white noise.

At this point, we can study the example of a system that have to filter a fast
pulse in presence of white noise. Assuming to have a gated integrator, depending
on the bandwidth of the filter we have to choose between the complete recovery
of the signal or the complete reduction of the noise. In fact, if the time constant
of the filter TF is much smaller than the duration TP of the pulse, the signal
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will be larger, but also the noise measured will be larger:

TF � TP → BWn =
1

TF
→ n2

y =
1

4TF
.

On the other hand, if we choose a filter whose time constant TF is much bigger
than the duration of the pulse TP , then the signal will be smaller but the noise
contribution will be smaller as well. In general, we can write the signal-to-noise
ratio in this case as: (

S

N

)
out

= A
1− e−

TP
TF√

λ
4TF

.

The question therefore is: can we retain the advantage of a long time constant
of the filter TF without sacrificing the signal?

Figure 4.18: Repetitive pulse.

A particularly interesting situation, in this case, is the one in which we have
a series of repetitive pulses. This situation is typical of many physical signals
and it does not necessarily imply that the signal is periodic. Considering the
use of a low-pass filter, there are two main situations that are possible. In the
first case, that is the dashed one in Figure 4.18, the capacitor of the filter is
completely discharged between one measurement and the other. We are thus
performing a repetitive series of measurements as the one we have seen in the
previous case. On the other hand, if the capacitor is not discharged after each
pulse, as in the solid line in Figure, we can gain signal. In fact, at each different
gate, we are integrating and thus summing the contribution coming from various
signals, while always having the same, constant noise contribution. This allows
us to obtain an higher value of the signal with respect to the noise and it can be
done, in a gated integrator, by assuming that through the whole measurement
the switch S2, that is in parallel to the capacitor, is always open, thus never
discharging it.

The weighting function of a gated integrator can thus be derived as in Figure
4.19. In particular, a Dirac delta coming during the period TC in which the first
switch is closed (and thus we are integrating) will give a constant contribution7,
while every delta function coming when the first switch is open (a period of time
that we call TO) will not give any effect, thus making that region of the weighting
function equal to zero. This gives us a weighting function w(t, τ) that is similar
to a square wave. Performing a suitable change of variables, from τ to τ ′, it
is possible to define a new weighting function that will consist in the sequence
of all the pieces of the previous one that are different from zero, resulting in a
new weighting function that is constant but whose duration, instead of being a
series of N rectangles of width TC separated by intervals of width TO, is just a

7The integral of a Dirac delta is a step.



210 CHAPTER 4. SIGNAL RECOVERY

Figure 4.19: Weighting function of a gated integrator.

single rectangle of width NTC . It is important to note that these two weighting
functions are completely equivalent from the viewpoint of a white noise8, since:

n2
y = λkwtt(0) = λ

∫
w2(t, τ) dτ = λ

∫
w′2(t, τ ′) dτ ′ = λKNTC .

This system, therefore, behaves, from the viewpoint of the noise, as a gated
integrator with an integration time that is equal to:

TG = NTC

therefore the signal-to-noise ratio can be written as:(
S

N

)
out

=

(
S

N

)
in

√
TG
Tn

=

(
S

N

)
sp

√
N

where Tn is the correlation time of the quasi-white noise at the input and we
can define the signal-to-noise ratio coming from the measurement of a single
pulse as: (

S

N

)
sp

=

(
S

N

)
in

√
TC
Tn

.

Averaging over N samples, therefore, the signal-to-noise ratio improves of a
factor

√
N when the white noise is dominant over every other noise source. This

new idea involves, however, the possibility of storing the information about the
previous samples, thus extending the average over multiple pulses, and it leads
to the development of the boxcar averager.

A simple schematic of a boxcar averager is represented in Figure 4.20. It
is slightly different from a gated integrator, since it is a low-pass filter that is
repetitively switched using a suitably triggered and controlled switch S1. This
circuit, as we will see, gives an exponential average rather than a uniform one.

Again, when the switch is closed this circuit perfectly mimics a low-pass
filter, therefore the delta function response is a piece of a decaying exponential.
When the switch is open, on the other hand, the contribution of a delta function
to the output is identically equal to zero. This behaviour is represented in Figure

8And also from the viewpoint of the signal.
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Figure 4.20: Schematic of a boxcar averager.

Figure 4.21: Weighting function for a boxcar averager.

4.21. Again, from the viewpoint of a white noise and of the signal, this weighting
function is completely equivalent to the one we can obtain, through a suitable
change of variables, by adding all the non-zero parts of the original weighting
function one after the other. We have thus obtained a new weighting function
w(t, τ ′) that is actually a true decaying exponential behaviour. This means that
the expression of the signal-to-noise ratio is similar to the one of a low-pass
filter.
In this new “equivalent time” τ ′ representation, the weighting function can be
written as:

w(t, τ ′) =
1

TF
e
− t−τ

′
TF u(t− τ ′)

and thus, for a white noise, we can write the output mean square value of the
noise as:

n2
y = λ

∫
w2(t, τ) dτ = λ

∫
w2(t, τ ′) dτ ′

therefore the signal-to-noise ratio is exactly equal to the one of a low-pass filter.
Note that, in this case, we have the benefits of a long integration time TF with
respect to the noise without loosing any signal, since we are accumulating over
a large number of examples. The signal-to-noise ratio can thus be written as:(

S

N

)
out

=

(
S

N

)
in

√
2TF
Tn

and therefore the signal-to-noise ratio of the boxcar averager is identical to the
one of the low-pass filter. Moreover, the output will depend on the input only
when the switch is closed, while the time that is needed to reach the steady-state
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condition depends on the temporal duration of the interval in which the switch
is closed TC and on the duration of the interval in which the switch is open TO
(therefore, on the sampling rate), but the signal-to-noise ratio is independent
from it.
For a gated integrator, then, we have seen that the improvement in the signal-
to-noise ratio is proportional to

√
N , where N is the number of samples we are

integrating. In the case of a boxcar averager, what is the meaning of N? Since
the weighting function is not constant, this is not a trivial consideration.
First of all, we can consider a single-pulse boxcar averager. Working on a sin-
gle pulse, we can assume the associated weighting function to be a portion of
exponential that starts at a certain value at time t− TC and reaches the value
1/TF at time t, while being identically equal to zero outside from this interval.
Assuming that:

TC � TF

we can neglect this exponential behaviour that is related to the discharge of
the capacitor over the time interval TC ; this is a consequence of the fact that
the time interval in which the switch is closed is much shorter than the time
constant of the capacitor. We can thus approximate the single-pulse weighting
function with a rectangle of height 1/TF . In this way, we are approximating the
single-pulse behaviour of the boxcar averager in this condition with the one of
a gated integrator (for which the weighting function will always be a rectangle)
with the following gain:

K =
1

TF
.

In this way, if we have the following mean square value of the noise and the
following output noise that are calculated in this rectangular approximation:

n2
y = λ

TC
T 2
F

, y = A
TC
TF

for a constant input signal with amplitude A and for a white (or quasi-white)
noise with input power spectral density λ, we can write the signal-to-noise ratio
for the single-pulse as:

(
S

N

)
sp

= A
TC
TF

√
T 2
F

λTC
= A

√
TC
λ

=

(
S

N

)
in

√
TC
Tn

where we have remembered that the input signal-to-noise ratio is:(
S

N

)
in

= A

√
Tn
λ
.

From the expression of the signal-to-noise ratio for the boxcar averager that
we have previously determined (and the we called with the subscript out), sub-
stituting the expression of the signal-to-noise ratio for the single-pulse we can
determine: (

S

N

)
BA

=

(
S

N

)
sp

√
2TF
TC

=

(
S

N

)
sp

√
Neq
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where we have defined the following equivalent number of samples, in analogy
to the case of the gated integrator, as:

Neq =
2TF
TC

.

This means that Neq represents the improvement of the signal-to-noise ratio
due to the exponential average. As we have seen in the previous case, the single-
pulse boxcar is usually approximated with a gated integrator and the boxcar
averager will give an improvement if and only if we have a repetitive signal,
thus dealing with many different pulses. In this way, we are thus considering
our exponentially weighted average as a uniform average over an equivalent
number of pulses under the approximation:

TF � TC

otherwise we need to explicitly consider the exponential discharge of the capac-
itor.
Removing this hypothesis, in the general case, in fact, the weighting function of
a single-pulse boxcar can be written as:

w(t, τ) =
1

TF
e
− t−τTF , t− TC ≤ τ ≤ t.

Assuming to have a constant input signal of amplitude A, then, the associated
output can be written as:

y =

∫
x(τ)w(t, τ) dτ = A

∫ t

t−TC

1

TF
e
− t−τTF dτ = A

(
1− e−

TC
TF

)
.

For the noise term, assuming a white stationary input noise with a bilateral
power spectral density equal to λ, we can write the mean square value of the
output noise as:

n2
y = λkwtt(0) = λ

∫
w2(t, τ) dτ =

λ

T 2
F

∫ t

t−TC
e
− 2(t−τ)

TF dτ =

=
λ

T 2
F

∫ TC

0

e
− 2γ
TF dγ =

λ

2TF

(
1− e−

2TC
TF

)
where we have exploited the following change of variables:

γ = t− τ, dτ = −dγ

inverting the extremes of the integration to absorb the minus sign. From these
considerations, we can write the signal-to-noise ratio for a single pulse as:

(
S

N

)
sp

=

A

(
1− e−

TC
TF

)
√

λ
2TF

(
1− e−

2TC
TF

) = A

√
2TF
λ
· 1− e−

TC
TF√

1− e−
2TC
TF

=

=

(
S

N

)
BA

1− e−
TC
TF√

1− e−
2TC
TF
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where we have recognized that:(
S

N

)
BA

= A

√
2TF
λ

is the signal-to-noise ratio for a boxcar averager in the condition:

t→∞

thus being equal to the one of a low-pass filter. Since by definition the following
relation holds: (

S

N

)
BA

=

(
S

N

)
sp

·
√
Neq

we can write the equivalent number of samples, in the general case, as:

Neq =
1− e−

2TC
TF(

1− e−
TC
TF

)2 =

(
1 + e

−TCTF

)(
1− e−

TC
TF

)
(

1− e−
TC
TF

)2 =
1 + e

−TCTF

1− e−
TC
TF

.

From this result, under the previous hypothesis:

TC � TF : 1 + e
−TCTF ' 2, 1− e−

TC
TF ' 1− 1 +

TC
TF

+ . . .

we can retrieve the previous result:

Neq '
2

1− 1 + TC
TF

=
2TF
TC

.

We can now ask to ourselves: what does it happen when the input noise is not
white? In this condition, we have to discuss the noise correlation. From the
expression of the mean square value of the output noise of a signal:

n2
y =

∫
Rxx(γ)kwtt(γ) dγ

in the case of a white noise we know that its correlation can be written as:

Rxx(γ) = δ(γ)

thus being sampling the temporal autocorrelation of the weighting function,
while in the case of a non-white noise it will explicitly depend on the autocor-
relation of the input noise. Moreover, in this case we have to consider the true
expression of the weighting function of the filter and not, as in the previous
case, its equivalent continuous representation. Assuming to have a periodic be-
haviour of the weighting function of the filter, from the definition of the temporal
autocorrelation of the weighting function:

kwtt(γ) =

∫
w(t, τ)w(t, τ + γ) dτ

we can observe that for γ = 0 we are integrating a term that is equal to w2(t, τ),
thus giving the same factor that we would have obtained from a low-pass filter.
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For different shifts γ, then, we will obtain a smaller and smaller superposition
of the two shifted replicas of the weighting function until, for γ = TC , this
superposition becomes identically equal to zero. If we then shift the two replicas
of γ = TC + TO then the first pulse of a replica will be overlapped to the
second one of the other, the second of one replica to the third of the other and
so on, giving another peak in the temporal autocorrelation, and so on and so
forth. Note that these contributions will be smaller and smaller when we are
overlapping distant pulses, at the end resulting in a train of spikes at:

m · (TC + TO), m ∈ N

enveloped in an exponential with the following time constant:

TF
TC + TO
TC

.

Figure 4.22: Correlation function for a boxcar averager if TC = 20 ns, TO = 1 µs
and TF = 0.5 µs. In blue it is represented the weighting function of a low pass
filter for a comparison.

In Figure 4.22 we have represented the correlation function in two different
scales, one for highlighting the presence of the envelope and the other for showing
the fact that is given by a series of discrete spikes, and we have compared it
with the weighting function of a low-pass filter. In the case of a white noise,
since the autocorrelation of the noise is a delta function centred in the origin,
we will be considering only the central spike of the boxcar averager and, since
it is equal to the value in zero of the correlation function for the low-pass filter,
we can immediately observe that if the noise is totally uncorrelated with itself
the two filters have the same performances. If the noise is not white and it is
self-correlated over a time that is larger than TC and smaller than TO:

TC < Tn < TO

then the the boxcar averager is clearly better than the low-pass filter, since we
are considering only the central spike of the autocorrelation of the boxcar aver-
ager, that will be much narrower than the region of the autocorrelation of the
low-pass filter considered. To reduce the noise we have thus to average over a
certain number of uncorrelated samples and, summing a certain number of com-
pletely uncorrelated pulses, the boxcar averager will give better performances.
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If the noise is strongly uncorrelated from one pulse to the other, therefore, the
boxcar averager is really effective also when we are dealing with non-white noise.

Figure 4.23: Frequency domain representation of the modulus Fourier transform
of the weighting function for the same choice of the quantities considered. A
comparison with the behaviour of the low-pass filter is possible.

The same comparison but in the frequency domain is represented in Figure
4.23. In this case, the modulus of the Fourier transform of the weighting func-
tion for the boxcar averager, that is represented in red, will give a much lower
frequency of the pole with respect to the low-pass filter. At high frequencies,
however, as it is possible to see both in a linear scale and in a logarithmic one,
the boxcar averager gives rise to spikes due to the presence of harmonics, that
are frequencies that are sampled in phase for many different pulses. Since the
value of the autocorrelation in the origin must be equal to the integral over the
whole spectrum of the square of this quantity, then the area of the two curves
must be identical. If the power spectral density of the noise is relevant only at
high enough frequencies (this means that the correlation time is quite small),
then it may be relevant for the low-pass filter but not for the boxcar averager
thus giving, in the frequency domain, the same advantages that we have seen in
the time domain.
The main typical parameters of a boxcar averager are:

• the gain width TC , that typically ranges from 1 or 2 ns to 20 or 30 µs and
that can be even shorter in fast samplers;

• the equivalent number of samples, that can range from one to several
thousands;

• the delay, that is intrinsically between 10 and 15 ns and that typically
ranges between 3 and 300 ns, unless custom modifications, but that is not
really important;

• the trigger rate, that is the maximum number of pulses that we can process
per each second and that is typically lower than 100 kHz.

We can now consider a new type of behaviour for a boxcar averager: the wave-
form recovery mode. This way of using this device is useful when we have a
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series of repetitive pulses for which we want to recover not only their amplitude
but also the shape of the pulse, that is its waveform. From an ideal perspective,
we could think to sample a pulse with a train of delta functions; however, these
delta functions in reality do not exist and they can only be approximated using
small rectangles in the time domain. However, since these rectangles are small
in the time domain, they will be very large in the frequency domain, thus col-
lecting a lot of noise and, if the noise is white, this will give rise to a terrible
signal-to-noise ratio. The solution, in this case, is to average over many different
pulse using a boxcar averager. In this situation, the trigger delay is not fixed:
it is increment such that it is possible to sweep the different pulses between an
initial and a final value. The measurement of each point (that will correspond to
a certain value of the trigger delay) will then be repeated for a certain number
of pulses (for example, N) in order to improve the signal-to-noise ratio before
sending the data to the output. In this way, it is possible to reconstruct the
waveform of the signal, in a process that is called equivalent-time sampling.

Figure 4.24: Waveform recovery mode.

In Figure 4.24 it is represented this procedure. It is important to remember
that we are sampling many different pulses, not only one, for many reasons,
one of which the problem of collecting a lot of noise. These different pulses,
moreover, will be sampled in different position (in general, we take only one or
two samples for each pulse) and we will take the average of the samples taken
in the same time instant with respect to the position of the pulse. In this case,
a very large number of pulses is required but it will allow a very clear signal
reconstruction with a significant reduction of the noise. This kind of sampling
is also called equivalent time sampling.

A slightly different device from a boxcar averager is a ratemeter, that is
represented in Figure 4.25. In this device, in fact, the function of the switch is
different, since it moved in front of the first buffer. This means that the switch
S1 is able to prevent the input signal to reach the capacitor but, on the other
hand, it is not able of preventing the discharge of the capacitor itself, since the
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Figure 4.25: A ratemeter.

buffer will connect the capacitor to the ground through the resistor.

Figure 4.26: Weighting function of a ratemeter.

The weighting function of this device is represented in Figure 4.26 (even
though the real behaviour may not be periodic). In this case, as we have previ-
ously said, the exponential discharge of the capacitor continues also when the
switch is open, thus during the time interval TO. This is different from the be-
haviour of the boxcar averager, in which we remained at the same level while
the switch was open. We can thus consider the delta function response to be a
continuous decreasing exponential sampled by many different rectangles.
Since the weighting function can be seen as the superposition of several differ-
ent pulses, the contribution of the n-th pulse to the weighting function can be
written as:

wn(t, τ) =
e
− t−τTF

TF
, τ ∈ [−n(TC + TO)− TC ;−n(TC + TO)] .

Assuming then to have a constant signal with amplitude A at the input of the
device, the contribution to the output of the n-th pulse, assuming for the sake
of simplicity that, for this pulse, t = 0, can be written as:

yn = A

∫ −n(TC+TO)

−n(TC+TO)−TC
wn(t, τ) dτ = A

∫ −n(TC+TO)

−n(TC+TO)−TC

e
τ
TF

TF
dτ =

= A

(
1− e−

TC
TF

)
e
−n(TC+TO)

TF .

Summing all these terms, then, the output considering all the different pulses
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can be written as:

y =

∞∑
n=0

yn = A

(
1− e−

TC
TF

) ∞∑
n=0

(
e
−TC+TO

TF

)n
= A

1− e−
TC
TF

1− e−
TC+TO
TF

where we have recognized the presence, in the sum, of a geometric series.
From the viewpoint of noise, on the other hand, the mean square value of the
output noise will be:

n2
y = λkwtt(0) = λ

∫
w2(t, τ) dτ = λ

∑
n

∫
w2
n(t, τ) dτ = λ

∑
n

knwtt(0)

where we have defined the contribution of the n-th pulse to the autocorrelation
as:

knwtt(0) =

∫ −n(TC+TO)

−n(TC+TO)−TC

e
2 τ
TF

T 2
F

dτ =
1− e−

2TC
TF

2TF
e
− 2n(TC+TO)

TF .

Summing all these contributions, we obtain that:

kwtt(0) =

∞∑
n=0

knwtt(0) =
1

2TF

(
1− e−

2TC
TF

) ∞∑
n=0

(
e
−2

TC+TO
TF

)n
=

=
1

2TF

1− e−
2TC
TF

1− e−
2(TC+TO)

TF

where we have recognized the presence of a geometric series, that gives:

n2
y =

λ

2TF

1− e−
2TC
TF

1− e−
2(TC+TO)

TF

.

From these considerations, we can write the signal-to-noise ratio of the ratemeter
as: (

S

N

)
out

= A

√
2TF
λ

1− e−
TC
TF√

1− e−
2TC
TF

·

√
1− e−

2(TC+TO)

TF

1− e−
TC+TO
TF

.

This expression can be divided into several different terms that allows us to
better understand the behaviour of this device. The first term:

A

√
2TF
λ

is the signal-to-noise ratio of a boxcar averager or, equivalently, of a low-pass
filter, since they are the same from the viewpoint of a white noise. Adding the
term:

1− e−
TC
TF√

1− e−
2TC
TF

we can obtain the signal-to-noise ratio of a single-pulse boxcar averager and this
comes from the fact that we are considering only the last pulse that has come
to the device. Last the term √

1− e−
2(TC+TO)

TF

1− e−
TC+TO
TF
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gives the effect of the exponential average we are performing and it will be the
square root of the equivalent number of samples. For this device, thus we can
define this equivalent number of pulses as:

Neq =
1− e−

2(TC+TO)

TF(
1− e−

TC+TO
TF

)2 =
���

���
��

(
1− e−

TC+TO
TF

)(
1 + e

−TC+TO
TF

)
(

1− e−
TC+TO
TF

)�2 =
1 + e

−TC+TO
TF

1− e−
TC+TO
TF

and if we assume to have the following condition:

TC + TO � TF

then it can be approximated as:

Neq '
2

1−
(

1− TC+TO
TF

) =
2TF

TC + TO
.

It is important to notice that, for this device, this condition includes also the
time interval TO in which the switch is open, while in the case of a boxcar
averager the only relevant time interval was the one in which the switch was
closed TC . This means that the equivalent number of samples for a ratemer is
always smaller than the equivalent number of samples of a boxcar averager:

2TF
TC + TO

<
2TF
TC

and thus the signal-to-noise ratio of a boxcar averager is always smaller than the
one of a ratemeter. In the case of the ratemeter, for correlated noise, the tem-
poral autocorrelation of the weighting function will then be similar to the one
that we have previously discussed for the boxcar averager, but with a smaller
amplitude of the spikes. This means that our system will be collecting a lower
fraction of noise but also a lower signal. It is not easy to intuitively determine
whether this is an advantage or a disadvantage but, from the calculation of the
signal-to-noise ratio that we have just performed, it is clear that this makes the
performances of the ratemeter to be worse than the ones of the boxcar averager.
This means that we have two possible behaviours for the two networks, depend-
ing on the position of a switch. In the boxcar averager, it is only the number of
pulses that we are collecting that matters, while for the ratemeter also the time
in which they are coming is relevant: it will be compared with the discharge
time of the filter. If the number of pulses per second, and thus the rate, is high,
we have that the signal-to-noise ratio in the ratemeter will be comparable to
the one of the boxcar averager.

In Figure 4.27 the two networks, of a ratemeter and of a boxcar averager, are
represented. In both cases, the switch is acting as a gate on the input source,
but while in the ratemeter case it is decoupled from the RC circuit through
the use of a voltage buffer, in the boxcar one is directly acts on the RC passive
filter. In the ratemeter, therefore, the RC passive filter has constant parameters,
it is unaffected by the switch and it does not have an hold state, while in the
boxcar case the time constant TF of the integrator filter is switched from a finite
value set by the RC circuit when the switch is closed to an infinite value when
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Figure 4.27: Comparison between a ratemeter and a boxcar averager.

the switch is open. In the ratemeter, therefore, the sample average is done on a
given time that is defined by the RC value, while in the boxcar case it is done on
a certain number of samples that is determined by the ratio between the time
constant of the filter and the temporal duration of the gate.

4.5 Discrete-time filters and their representa-
tion in the frequency domain

In a discrete time filter, a certain number N of samples of the input signal and
of the noise are acquired with a certain sampling time tS . A suitable weighted
average is then performed on the data, obtaining the following output:

y =

N∑
k=1

wk · (xk + nk)

where k is an index that is referred to the sample considered, wk is the weight
of this average, xk is the signal at time k and nk is the noise at the same time
instant.
The simplest kind of discrete-time filter that we can consider is the uniform
average. In this case, each one of the samples has the same weight, that will be
equal to the inverse of the number of samples:

wk =
1

N

thus leading to the following output:

y =
1

N

N∑
k=1

(xk + nk)

that is an average of the samples with uniform weights. In this way, we are
actually building a discrete-time version of a gated-integrator, as it is represented
in Figure 4.28.

Assuming for example a constant signal of amplitude A and a white noise
(or a non-correlated9 stationary noise) at the input, we can write the output as:

ȳ =
1

N

N∑
k=1

(A+ nk) =
1

N

N∑
k=1

(A+ nk) = A

9This means that the correlation time of the noise considered Tn is shorter than the time
interval between two consecutive samples:

Tn < ts.
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Figure 4.28: The equivalent of a gated-integrator in discrete time the uniform
average.

since we have assumed the noise to have a null average, while the mean square
value of the output noise can be written as:

n2
out = (y −A)2 =

1

N2

(
N∑
k=1

nk

)2

=
1

N2

N∑
k=1

n2
k =

1

N
n2
in.

Calculating the ratio between these two quantities, we can determine the signal-
to-noise ratio of this discrete-time filter as:(

S

N

)
out

=
ȳ√
n2
out

=
A√
n2
in

√
N =

(
S

N

)
in

√
N.

As expected from the result of the corresponding continuous time filter, the
signal-to-noise ratio improves of a factor

√
N , where N is the number of uncor-

related samples that we are considering.
Setting the total time of the measurement, that is equal to N times the interval
between two samples, equal to the temporal duration of the gate of a gated
integrator:

TM = TG = N · tS
we can compare the signal-to-noise ratio for a gated integrator, that we have
determined in the previous section:(

S

N

)
GI

=

(
S

N

)
in

√
TM
Tn

to the one of the uniform average:(
S

N

)
AV

=

(
S

N

)
in

√
TM
tS

but since we have assumed the noise samples to be uncorrelated, thus meaning
that the correlation time of the noise is lower between the temporal distance
between two samples:

Tn < tS

this implies that the signal-to-noise ratio of a gated integrator is higher than
the one of a uniform averager:(

S

N

)
AV

<

(
S

N

)
GI

.
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A different possibility is to consider an ideal sampling procedure. In this case,
the output signal will be equal to the input one at a certain set of discrete time
instants:

y(t) = x(tS)

and thus this sampling operation, from a continuous time perspective, can be
seen as the convolution of the input signal with a particular weighting function:

y(t) =

∫
x(τ)δ(tS − τ)dτ.

This means that the weighting function in the case of an ideal sample is a delta
function:

w(t, τ) = δ(tS − τ)

centred in the time instant that we want to sample. Considering to be sampling
at many different time instants that are integer multiples of the sampling time,
we can write this weighting function as:

w(t, τ) =
1

N

N−1∑
k=0

δ(τ − (t− ktS)) =
1

N
rect(TM )

+∞∑
k=−∞

δ(τ − ktS)

and it is represented in Figure 4.29. Note that every delta function will be
sampling the input signal and then it will be multiplied by 1/N , thus leading
to the correct output. Moreover, observe that we have written this sampling as
the product between a rectangular function of width TM centred in a certain
position and an infinite comb of delta functions (also called Dirac comb) in order
to have a simpler representation when working in the frequency domain.

Figure 4.29: Weighting function for an ideal sampler.

In order to deal with the noise, we now have to calculate the temporal
autocorrelation of the weighting function with itself:

kwtt(γ) =

∫
w(t, τ)w(t, τ + δ) dτ

since its value in zero will be useful for determining the mean square value of
the output noise. When γ = 0, all the delta functions of the Dirac comb are
overlapped with the corresponding functions of the other comb, thus giving:

kwtt(0) =
1

N2
·N · δ(γ) =

1

N
δ(γ).
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Moving away from this point, for a different value of γ we will not have any
overlap between the different combs until they start to overlap again when
the shift is equal to tS . In this case, however, only N − 1 delta functions are
overlapping, thus giving:

kwtt(tS) =
1

N2
· (N − 1) · δ(γ − tS).

Repeating this reasoning over and over, we can determine the following expres-
sion for the autocorrelation for the weighting function:

kwtt(γ) =

{
0, γ 6= ntS

1
N2 (N − n)δ(γ), γ = ntS

, n ∈ N

and this formula can be rewritten, in order to have a simpler representation
when dealing with the frequency domain, as:

kwtt(γ) =
1

N
tri(TM )

+∞∑
k=−∞

δ(γ − ktS)

that is the product between a unitary amplitude triangular signal and a Dirac
comb; this will be the expression of the output noise for this device.

Figure 4.30: Autocorrelation of the weighting function.

Assuming to have a weakly self-correlated input noise with a correlation time
Tn that is smaller than the sampling time tS of the device:

Tn < tS

in this case the only relevant part of the autocorrelation of the weighting function
for the calculation of the mean square value of the output noise will be the central
spike and, therefore, we can write this noise term as:

n2
y =

∫
Rxx(γ)kwtt(γ) dγ =

n2
x

N
.

Note that this value is equal to the one at the input of the device but reduced
of a factor N , thus giving an improvement of

√
N in the signal-to-noise ratio of

the device, exactly as we expected from the previous calculations.

In the frequency domain, we can calculate the Fourier transform of the
weighting function, that will be the convolution of the Fourier transform of
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Figure 4.31: Calculation of the mean square value of the output noise.

a rectangle (that is a sinc function10) with a series of delta functions (since the
Fourier transform of a Dirac comb is a rescaled Dirac comb):

F [rect(Tm)] = Tm sinc(πfTm), F

[
+∞∑

k=−∞

]
=

1

tS

+∞∑
k=−∞

δ

(
f − k

tS

)
.

Remembering that the following relationship holds:

TM = NtS

we can write the Fourier transform of the weighting function as:

W (t, f) =
TM
N

sinc(πfTM ) ∗ 1

tS

+∞∑
k=−∞

δ

(
f − k

tS

)
=

=

+∞∑
k=−∞

sinc

(
πTM

(
f − k

tS

))
where we have considered that the convolution with a Dirac comb corresponds
to a shift of the convolved quantity along the frequency axis. We will thus
have a certain number of sinc functions that are centred in integer multiples of
1/tS whose first zero is at 1/TM from the maximum. This Fourier transform is
represented in Figure 4.32.

Figure 4.32: Fourier transform of the weighting function.

To calculate the mean square value of the output noise in the frequency
domain we can consider the Fourier transform of the autocorrelation of the
weighting function, that will correspond to the squared modulus of the Fourier

10To calculate the factor in front of it, we have to consider that the value in zero of the
Fourier transform will be the integral in the time domain.



226 CHAPTER 4. SIGNAL RECOVERY

transform of the weighting function. Computing this value:

F [kwtt(γ)] = |W (t, f)|2 =
TM
N

sinc2(πfTM ) ∗ 1

tS

+∞∑
k=−∞

δ

(
f − k

tS

)
=

=

+∞∑
k=−∞

sinc2

(
πTM

(
f − k

tS

))
.

Notice that, in the calculation of this square, we have considered that the set
of the shifted sinc functions is an orthogonal set, since it will not lead to any
cross-product.

Figure 4.33: Square modulus of the Fourier transform of the weighting function.

From these calculations, we can derive the expression of the mean square
value of the output noise in the case of a quasi-white noise in the frequency
domain. In general, it can be written as:

n2
y =

∫
Sx(f)|W (t, f)|2 df

but since we are assuming to have a quasi-white noise, then the power spectral
density will not vary significantly over a certain sinc function. This means that
the sinc function is acting as if it were a delta function, sampling the power
spectral density in certain well defined points in which it is almost constant:

n2
y '

1

TM

+∞∑
k=−∞

Sx

(
k

tS

)

where the factor 1/TM is related to the fact that area of each sinc2 function is
equal to this factor. From the expression of the measurement time:

TM = NtS

we can write:

n2
y =

1

N

+∞∑
k=−∞

1

tS
Sx

(
k

tS

)
=
n2
x

N
.

In the last equivalence, we have considered that the term over which we are
summing is a series of rectangles that are not overlapping one with the other
and that, when summed, give the power spectral density at the input of the
device, thus being equal to n2

x.
We can now assume to have, at the input of this filter, a correlated input

noise. However, if we assume this noise to be not too much correlated, since the
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Figure 4.34: Square modulus of the weighting function compared to the power
spectral density of the input quasi-white noise.

Figure 4.35: Autocorrelation of the weighting function and autocorrelation of a
non-white input noise.

mean square value of the output noise can be written as:

n2
y =

∫
Rxx(γ)kwtt(γ) dγ

where Rxx(γ) is the autocorrelation of the input noise, we can assume this
function to be significantly different from zero only over a limited number, with
respect to N , of the delta functions that are present in the autocorrelation of
the weighting function. Momentarily neglecting the amplitude of these delta
functions, this means that we are sampling the autocorrelation of the input
noise with a (rescaled) Dirac comb, obtaining the following discrete sum:

n2
y '

1

N

∑
k

Rxx(ktS)

where the sum is extended over the number of Dirac delta functions in which
the autocorrelation of the input noise is significantly different from zero. It is
important to note that also in this case we have the contribution of the central
Dirac delta function (γ = 0) as in the case of the white noise, plus a series
of additional terms that represents positive contributions to the output noise.
This means that if the noise is self-correlated, even weakly, it is more difficult
to obtain a cancellation of the noise contribution between two different samples
of the input.
In the frequency domain, this calculation leads to the same result:

n2
y =

∫
Sx(f)|W (t, f)|2 df ' 1

N

∑
k

1

tS
Sx

(
k

tS

)

where again we can consider the sinc2 functions as if they were delta functions
with respect to the power spectral density. This quantity, in fact, even though
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it will not be exactly flat due to the fact that we are not dealing with a white
noise, can be considered almost constant on the extension of the sinc2 function.
Alternatively, the equivalence of the two expressions for the mean square value
of the output noise can be demonstrated as a consequence of the Parseval’s
theorem.

4.6 Comparison between continuous- and dis-
crete-time filters

Figure 4.36: Weighting function and associated autocorrelation for a gated in-
tegrator.

It this section, we can now compare discrete-time filters with gated integra-
tors. To perform this comparison, we first have to set the gain of the two filters
to be equal. Since the gain of a discrete-time filter is unitary:

KDT = 1

we have to set the temporal duration of the gate to be equal to the measurement
time:

TG = TM

and to write that, for a gated integrator:

KGI =
1

TG
.

This means that the peak value of the autocorrelation of the weighting function
for a gated integrator will be equal to:

kwtt(0) = K2TG =
1

TM
.
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In this condition, the mean square value of the output noise of a gated integrator
can be written as:

n2
GI =

∫
Rxx(γ)kwtt(γ) dγ

and assuming to have a small self-correlation of the input noise:

Tn < TM

we can assume the autocorrelation of the weighting function kwtt(γ) to be almost
constant and equal to kwtt(0) on the interval in which the autocorrelation of the
input noise Rxx(γ) is different from zero, thus obtaining:

n2
GI '

1

TM

∫
Rxx(γ) dγ =

1

TM
Sx(0)

since the integral over the whole time axis is equivalent to the value in the origin
of the corresponding function in the frequency domain.
Assuming then to have the same output signal, since we have assumed to have
the same gain for both filters, we can compute the ratio between the signal-to-
noise ratio of the gated integrator and the one of the discrete-time filter. Since
the two output signals cancel out, we can obtain:

n2
AV

n2
GI

=
1
N

∑
k Rxx(ktS)

1
TM

∫
Rxx(γ) dγ

but since we know that:
TM = N · tS

we obtain:
n2
AV

n2
GI

=
tS
∑
k Rxx(ktS)∫
Rxx(γ) dγ

> 1.

This ratio can be evaluated from Figure 4.37, where the continuous line rep-
resents the integrand, while the piecewise constant function is the outcome of
the discrete sum. As it can be clearly seen, for any rectangle we are more or
less approximating the area underlying the continuous curve apart from the
central rectangle, that is always above the continuous curve. This means that
the numerator in the ratio is bigger than the denominator and thus that the
signal-to-noise ratio of the gated integrator is higher than the one of the dicrete-
time filter considered, since the noise in this last filter is higher than the noise
collected from a gated integrator. In the frequency domain, this can be written
as:

n2
AV

n2
GI

=

1
TM

∑
k Sx

(
k
tS

)
1
TM

Sx(0)
=
Sx(0) +

∑
k 6=0 Sx

(
k
tS

)
Sx(0)

> 1.

Up to now, in our comparison we have only considered, as a discrete-time
filter, the uniform average. However, it is also possible to perform a non-uniform
average and it is usually used to mimic the behaviour of any continuous time
filter or to design filters that were unfeasible in a continuous time perspective.
Considering once again a constant input signal, the output signal can be written
as:

y =

N∑
k=1

wk(xk + nk) =

N∑
k=1

wk(xk + nk) =

N∑
k=1

wk(xk + nk)
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Figure 4.37: Comparison between the integral and the discrete sum in the ex-
pression of the mean square value of the output noise for a gated integrator and
for a discrete-time filter.

but since the average of the noise is zero:

y =

N∑
k=1

wkxk = A

N∑
k=1

wk.

On the other hand, for a non-correlated stationary noise in each sample, thus a
noise having a correlation time lower than the distance between two neighbour-
ing samples:

Tn < tS

the mean square value of the output noise can be written as:

n2
out =

N∑
k=1

w2
kn

2
k = n2

in

N∑
k=1

w2
k.

Calculating then the signal-to-noise ratio in this case:(
S

N

)
out

=
A
∑N
k=1 wk√

n2
in

∑N
k=1 w

2
k

=

(
S

N

)
in

∑N
k=1 wk√∑N
k=1 w

2
k

.

Note that, if we assume to have constant weights, the improvement with
√
N

that we have previously demonstrated can be recovered.
Another possibility for having a discrete-time filter is to use a power-law weight-
ing, where the weights are equal to a certain basis α to the power of the order
k considered:

wk = αk.

In this case, the average value of the output signal can be written as:

ȳ = A

N−1∑
k=0

αk ' A
∞∑
k=0

αk = A
1

1− α

where we have assumed that the number of samples N considered is large, thus
allowing us to recognize the presence of a geometric series. Under the same
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assumption, the mean square value of the output noise can be written as:

n2
out = n2

in

N−1∑
k=0

α2k ' n2
in

∞∑
k=0

α2k = n2
in

1

1− α2

thus giving rise to the following signal-to-noise ratio:(
S

N

)
out

=

(
S

N

)
in

√
1− α2

1− α
=

(
S

N

)
in

√
(1− α)(1 + α)

1− α
=

(
S

N

)
in

√
1 + α

1− α

where we have considered the input signal-to-noise ratio:(
S

N

)
in

=
A√
n2
in

.

In this case, we can define the equivalent number of samples as:

Neq =
1 + α

1− α

consistently with what we have seen before. It is important to see, now, that
the equivalent number of samples Neq increases with α, being divergent for:

α → 1

where, in this limit: (
S

N

)
out

−−−→
α→1

+∞

thus meaning that we do not have any noise. However, reasoning on the meaning
of this limit, in this case we are obtaining a uniform average and this assumption,
that is clearly unphysical, comes from the fact that we have assumed the number
N of samples to be extremely large, in particular:

N → ∞

in order to be able to write the previous output signal and noise as two geometric
series. Not considering this approximation, we could have written:

N−1∑
k=0

αk =
1− αN

1− α
,

N−1∑
k=0

α2k =
1− α2N

1− α2

for a finite value of N . In this case, the expression of the signal-to-noise ratio is
different and it gives the following number of equivalent samples:

Neq =

(
1 + α

1− α

)
·
(

1− αN

1 + αN

)
where we can see that also in this case:

Neq ∝ α

and the best case is when:

α→ 1 ⇒ Neq ' N
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Figure 4.38: Representation of a boxcar averager as an averaging filter.

and we are considering a uniform average. This result is not strange: every
sample, in fact, will contain the same signal and the same amount of noise,
therefore there is not any reason for treating different samples differently. This
means that the best option for filtering an uncorrelated noise is to have a uniform
average.

We can now consider the weighting function of a boxcar averager in the
following limit:

TC � TF

as it is represented in Figure 4.38. In this case, the boxcar averager can be seen
as the cascade of two different filters. One filter, in fact, will give the single-pulse
rectangular weighting function and, therefore, it will be a gated integrator with
a gain equal to 1/TF . The other filter, then, will scale the output of the first
filter with a power-law average, where we can consider the following parameter:

α = e
−TCTF .

The improvement in the signal-to-noise ratio given by the introduction of the
second stage can then be written as:

Neq =
1 + α

1− α
=

1 + e
−TCTF

1− e−
TC
TF

' 2TF
TC

under the previously considered hypothesis, thus obtaining exactly the relation-
ship that is linking the signal-to-noise ratio of a boxcar averager to the one of a
gated integrator. Considering also the discharge of the device when the switch is
open, thus during the time intervals TO, we can obtain an analogous expression
for the ratemeter:

α = e
−TC+TO

TF ⇒ Neq =
2TF

TC + TO

where this expression will be valid in the following approximation:

TC + TO � TF .

4.7 Optimum filtering

In the general case, therefore, we have seen how it is possible to filter some types
of noise depending on the signal we have. The question now is: what is the best
filter, called the optimum filter, that we can apply for filtering a certain noise
and a certain signal?
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In many physics and engineering applications, the signal has a fixed and known
shape, that will depend on several different parameters. The purpose of filtering,
then, is to make a precise measurement of these parameters, for example the
amplitude or the arrival time of this signal. We want thus to determine the opti-
mum filter, that gives us the best signal-to-noise ratio for this kind of problem.
The first example we can consider is the one of a discrete-time filter that is fil-
tering a generic, non-constant signal Ax(t) (where A is the amplitude) affected
by white noise. Assuming this discrete-time filter to be sampling the input (both
signal and noise) at discrete time instants:

tk = k · tS

we can write the sampled input signal as:

A · xk = A · x(k · tS)

and we can assume this amplitude A to be the parameter of interest. In this
case, at the output of the filter we will have:

y =

N−1∑
k=0

wk(Axk + nk)

and we can thus write the mean value of the output signal as:

ȳ =

N−1∑
k=0

wk(Axk + nk) =

N−1∑
k=0

wk(Axk + nk) =

N−1∑
k=0

wk(Axk + nk) =

= A

N−1∑
k=0

wkxk.

The mean square value of the output noise, then, can be written as:

n2
out =

N−1∑
k=0

w2
kn

2
k = n2

in

N−1∑
k=0

w2
k

where we have considered that the signal has a null variance (being determinis-
tic), that all the noise samples are uncorrelated (being a white noise) and thus
the variances adds up and that the noise is stationary, thus all the noise samples
have the same, constant variance n2

in. From these considerations, we can write
the output signal-to-noise ratio as:(

S

N

)
out

=

(
S

N

)
in

∑N−1
k=0 wkxk√∑N−1
k=0 w2

k

where the input signal-to-noise ratio clearly is:(
S

N

)
in

=
A√
n2
in

.

Our goal, now, is to determine the optimum choice for the weights wk in order
to maximize the signal-to-noise ratio. This can be done by differentiating the
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output signal-to-noise ratio with respect to a certain k-th weight and imposing
this derivative equal to zero; repeating this procedure for any weight, we will
obtain the optimum filter:

∂

∂wn

(
S

N

)
out

= 0 ∀n = 1, . . . , N.

Computing one of these derivatives (they are all equal), we obtain:

xn

√∑N−1
k=0 w2

k −
wn√∑N−1
k=0 w2

k

∑N−1
k=0 wkxk∑N−1

k=0 w2
k

= 0

where we have neglected the constant term represented by the input signal-
to-noise ratio (since it would have multiplied the whole fraction). Solving this
expression for the n-th weight wn we obtain:

wn = xn

∑N−1
k=0 w2

k∑N−1
k=0 wkxk

∀n.

In this case, we can clearly see that the optimum weights are proportional to
the amplitude of the signal. We can immediately observe, in fact, that the ratio
between the two sums that is multiplying the signal xn will be the same for any
weight, thus representing a constant factor; the only relevant dependence is the
one from the amplitude of the input signal xn. This is actually reasonable: any
sample will have the same amount of uncertainty (represented by the noise) since
the noise is stationary. We want thus to give more importance to the samples
in which we have more information, that are actually the samples in which the
signal is stronger.
A second case that we can study is the one of a continuous-time filter in which
again the input signal Ax(t) is affected by a white noise. In this case, from the
definition of the output signal, we can write:

y = A

∫
x(τ)w(t, τ) dτ

and thus, since the autocorrelation of the noise is a delta function by definition
of white noise, we can write the mean square value of the output noise as:

n2
out = λkwtt(0) = λ

∫
w2(t, τ) dτ.

In this case, the square of the output signal-to-noise ratio can be written as:(
S

N

)2

out

=
y2

n2
out

=
A2

λ

∣∣∫ x(τ)w(t, τ) dτ
∣∣2∫

w2(t, τ) dτ
.

To determine the optimum value of the weighting function, we have now to
recall an important inequality coming from Functional Analysis, that is called
the Schwartz inequality, in the Lebesgue space L2:

|〈x,w〉| ≤ ‖x‖2 · ‖w‖2.
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Squaring this relationship, since all the terms involved are by definition positive
quantities, we can write:

|〈x,w〉|2 ≤ ‖x‖22 · ‖w‖22

and therefore, from the definitions of the scalar product and norm in this space,
we obtain that:∣∣∣∣∫ x(τ)w(t, τ) dτ

∣∣∣∣2 ≤ ∫ |x(τ)|2 dτ ·
∫
|w(t, τ)|2 dτ.

It is important to note that, in the case in which:

w(t, τ) ∝ x(τ)

this inequality actually becomes an equivalence, from the definition of norm and
of inner product. Applying this inequality to the previously computed signal-
to-noise ratio:(

S

N

)2

out

≤ A2

λ

∫
|x(τ)|2 dτ ·(((((

((∫
|w(t, τ)|2 dτ

���
���

∫
w2(t, τ) dτ

=
A2

λ

∫
|x(τ)|2 dτ

and, as we have previously said, the maximum signal-to-noise ratio, that corre-
sponds to the optimum case, will be obtained when:

w(t, τ) ∝ x(τ)

consistently with what we have stated for discrete-time systems. In this condi-
tion we are dealing with a so called matched filter, that can be represented as
in Figure 4.39.

Figure 4.39: A matched continuous-time filter.

It is important to notice that this filter will weight more the regions in which
the signal is stronger, while it will discard the regions in which it is negligible.
In the first regions, in fact, the signal will be much stronger than the noise,
thus having an higher signal-to-noise ratio, while in the other regions the signal
will be similar to or lower than the noise, giving a very poor signal-to-noise
ratio. This will imply, however, that the designer of the filter knows the shape
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(in a more formal way, the time dependence) of the signal, having as the only
unknown its amplitude. This is the case in almost any physical signal, but not
in everyone of them; it depends on the problem we are dealing with. Assuming
a matched filter:

w(t, τ) = G · x(τ)

we can write the output signal as:

y = AG

∫
x2(τ) dτ

thus obtaining as the mean square value of the output noise:

n2
out = λkwtt(0) = λG2

∫
x2(τ) dτ

that will give the following value of the signal-to-noise ratio:(
S

N

)
out

=
A√
λ

√∫
x2(t) dt =

√
E

λ

where E has been defined as the energy of the signal.
This optimum filtering property can also be determined in the frequency domain,
where the previously written signal-to-noise ratio becomes:(

S

N

)2

=
A2

λ
·
∣∣∫ X(f)W ∗(t, f) df

∣∣2∫
|W (t, f)|2 df

≤

≤ A2

λ
·
∫
|X(f)|2 df ·(((((

((∫
|W (t, f)|2 df

((((
(((∫

|W (t, f)|2 df
=

=
A2

λ

∫
|X(f)|2 df

where we have considered the following inequality:∣∣∣∣∫ X(f)W ∗(t, f) df

∣∣∣∣2 ≤ ∫ |X(f)|2 df ·
∫
|W (t, f)|2 df

where the square modulus makes W (t, f) equal to its complex conjugate and
where the equality holds if and only if:

X(f) = W (t, f).

Alternatively, the same result could have been derived using the Parseval’s the-
orem.
In the frequency domain, we can now consider the case of a non-white noise,
where the signal in the frequency domain is AX(f) and the noise has a certain
stationary power spectral density Sn(f). In this case, we can assume to have at
our disposal a particular filter, called linear whitening filter Hw(f), that is able
to transform any non-white input power spectral density into a white power
spectral density:

Sn(f)|Hw(f)|2 = λ = const.
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From this definition, this whitening filter can be written as:

|Hw(f)| =

√
λ

Sn(f)

and, after it, we can use a matched filter on the output white signal:

Xw(f) = Hw(f)AX(f)

as we have just seen in the previous part of this section. It is extremely important
to remember that this whitening filter will act both on the noise and on the signal
without any distinction between them: this is a possible source of errors during
the exercises.

Figure 4.40: Use of a whitening filter and its effect on the signal and on the
noise.

In Figure 4.40 we have represented the cascade of a whitening filter and an
optimum filter and its effect on the input signal and input noise, in particular
considering that for an optimum filtering the weighting function of the filter
must be proportional to the signal at the input of this filter multiplied by a
suitable gain G:

GX(f)Hw(f).

At the output of this device (that is usually called, as a whole, thus compre-
hending also the whitening filter, an optimum filter) we obtain the following
signal:

y(t) =

∫
AX(f)Hw(f) · (GX(f)Hw(f))

∗
df =

=

∫
AX(f)

(
GX(f)|Hw(f)|2

)∗
df =

=

∫
A|X(f)|2|Hw(f)|2 df

where thus the global weighting function of the filter, in the frequency domain,
is:

W (t, f) = GX(f)|Hw(f)|2.

This gives us the following signal-to-noise ratio:(
S

N

)2

out

=
A2

λ

∫
|X(f)|2|Hw(f)|2 df =

= A2

∫
|X(f)|2

Sn(f)
df.
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The optimum filter can then be redefined, in the frequency domain, as:

W (f) = GX(f)|Hw(f)|2 = G′ · X(f)

Sn(f)
, G′ = G · λ

thus being proportional to the ratio between the spectrum of the signal X(f)
and the input, non-white power spectral density of the noise. Alternatively, we
could have derived this result from an analytical point of view directly in the
frequency domain by using the Schwartz inequality:(

S

N

)2

out

= A2

∣∣∫ X(f)W ∗(t, f) df
∣∣2∫

|W (t, f)|2Sn(f) df
≤

≤ A2

∫ |X(f)|2
Sn(f) df ·

(((
((((

(((∫
Sn(f)|W ∗(t, f)|2 df

(((
((((

(((∫
|W (t, f)|2Sn(f) df

=

= A2

∫
|X(f)|2

Sn(f)
df

where, to apply the Schwartz inequality, we have multiplied and divided, in the
integral at the numerator, by

√
Sn(f). We can thus consider that the optimum

filter will be then related to the ratio between the spectrum of the signal and
the power spectral density of the non-white noise at the input. The fact that we
are splitting the description of the optimum filter in a whitening filter cascaded
with a matched part is only a matter of convenience and interpretation: in reality
the two parts are implemented together in a variety of ways. Last, if the noise
is gaussian, the filter will be optimum even with respect to some non-linear
alternatives.

Figure 4.41: A finite time pulse and the corresponding output.

We can now apply these considerations to the case, represented in Figure
4.41, of a finite pulse time. In particular, we can assume Ax(τ) to be a rectangu-
lar signal to which is superimposed a white noise. Since we want to be dealing
with an optimum filtering continuous-time case, we can write the weighting
function of the filter as:

w(t, τ) = Gx(t− τ)

since in this way it is clearly proportional to the signal and it will have the same
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duration Tp of the pulse. In this case, the output signal will be:

y(t) =

∫
Ax(τ)w(t, τ) dτ

and therefore it will be the integral of the product between two rectangles, that
is clearly the triangle represented in the Figure. In this case, the maximum value
of the output is equal to:

GATp

and this will be the value to be considered when calculating the signal-to-noise
ratio. However, to obtain this value we need to wait a time Tp from the arrival
of the signal, therefore a time Tp is needed for processing the pulse. If this time
Tp is very long, this might be a problem.

Figure 4.42: Effect of a finite measurement time.

To better understand why a long pulse duration might represent a problem,
we can consider the case represented in Figure 4.42. In this case, the input
signal is a decaying exponential, that therefore will vanish only in the limit
for the time t that tends to infinity. From a practical point of view, however,
we can suppose that five or six time constants are enough for the signal to be
completely decayed. If another signal is coming to the system before the first
one has completely decayed or, alternatively, if we require the response of the
system to have a certain speed, this might represent a problem. The question
therefore is: what is the maximum time that we can wait for the acquisition of
this signal? This time will be finite and it is called the readout time tm. This
means that the weighting function will match the signal only in the interval of
interest, thus between 0 (assumed to be the arrival time of the pulse) and the
time tm. In this case, the signal-to-noise ratio that we can obtain will be smaller
than the optimum one, since the output signal will be:

y(t) =

∫ ∞
0

Ax(τ)w(t, τ) dτ = A

∫ tm

0

w2(t, τ) dτ.

We are thus loosing part of the precision of our filter, but it will have a faster
response.

In the case of an exponential input signal, then, the output will be the
one represented in Figure 4.43. In the case of a truncated exponential input
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Figure 4.43: Output signal for an exponential input signal.

Figure 4.44: Output signal for a truncated exponential input signal.

signal, that is a time-limited input signal, on the other hand, the output will be
proportional to the time correlation of the input signal, as it is represented in
Figure 4.44. This is the reason why the matched filter is sometimes called the
correlator.

We can now study the delta-function response of this filter with a limited
measurement time. If the filter is linear and time-invariant, then we have that
the delta function response is just the shifted time reversal of the weighting
function:

w(t, τ) = h(t− τ).

In principal, however, this filter is difficult or impossible to build, since the
weighting function of an optimum filter is almost never a linear and time-
invariant filter. In fact, it will rather be a time-variant or digital filter, since
it will involve a sampling procedure, therefore some approximations are often
used in order to simplify the design of the filter still having an acceptable per-
formance degradation. In this case, the weighting function w(t, τ) is only an
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Figure 4.45: Delta function response of this filter.

approximation of the signal x(t), thus leading to some errors that will lower the
signal-to-noise ratio; we must then verify if these errors justify or not the in-
crease in the complexity that is needed for implementing a real optimum filter.
In the case of non-stationary white noise, the autocorrelation of the noise and
its power spectral density can be written as:

Rnn(t1, t2) = λ(t1)δ(t2 − t1), Sn(t, f) = λ(t)

where the power spectral density is constant but with a time-dependent value,
while the noise autocorrelation is a delta function that is changing position with
time. This time dependence is the consequence of the fact that we are dealing
with a non-stationary noise. In this case, the output noise can be written as:

n2
out(t) =

∫∫
Rnn(α, β)w(t, α)w(t, β) dα dβ =

=

∫∫
λ(α)δ(α− β)w(t, α)w(t, β) dα dβ =

=

∫
λ(α)

(∫
δ(α− β)w(t, β) dβ

)
w(t, α) dα =

=

∫
λ(α)w2(t, α) dα.

Since the output signal is, again:

y = A

∫
x(τ)w(t, τ) dτ

we can observe that we have obtained exactly the same expressions that we
had for a stationary non-white noise, therefore we can draw the same conclu-
sions, obtaining that the optimum filter will be characterized by the following
weighting function:

w(t, τ) = G
x(τ)

λ(τ)
.
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In the general case, however, we will not have any simplification and we will
need to rely only on the most general formulas.
Last, as an example we can consider the case of the shot noise. Assuming to be
dealing, for example, with the signal coming from a photodetector, the output
signal will be a certain current I(t) that is affected by a shot noise11 with the
following bilateral power spectral density:

Sn = qI(t)

thus being a white and non-stationary noise term. In this case, the optimum
filter will become, from the previous relation:

w(t, τ) = G · �
�I(t)

q�
�I(t)

= const

thus being identical to a gated integrator. Changing the amplitude of the signal,
in fact, we are changing also the amplitude of the noise for the whole duration
of the signal, under the assumption that the shot noise is the prevailing noise
source in our device. If other noise sources are present (for example, the thermal
noise), the weighting function must be modified accordingly, depending on the
fact that we are dealing with a noise that is white and/or stationary.

4.8 Low-frequency noise

At this point, we have completed the part about the white and high-frequency
noise, therefore we can change our perspective and consider the low-frequency
noise. In this case, since the noise is at a low frequency, its correlation time will
be long with respect to the acquisition time, changing radically the way we are
filtering it. If the different noise samples are uncorrelated or weakly correlated,
in fact, we can try to average them, but if they are correlated averaging is a
totally ineffective operation, since we will obtain almost the same amount of
noise. We need then to tackle this problem with different techniques.

4.8.1 High-pass filters

As we have just considered, the previous methods are not effective in reducing a
low-frequency noise. This is clear both in the time domain, where the variations
of the noise take place on a time-scale that is much larger than the one of the
filter, and in the frequency domain, where the power spectral density of the
noise is located at low frequencies, where the square modulus of the Fourier
transform of the weighting function is different from zero. We want thus to be
able to reject the low frequency components and this can be done using a so
called high-pass filter (HPF).

This kind of filter is represented in Figure 4.46. It is clearly a linear and
time-invariant filter, being the composition of different linear and time-invariant
components, and its output is the voltage measured across the resistor R. To
determine its delta function response, we can first consider its step function
response. When a step is coming to the input of the device, the voltage across

11Related to the Poisson fluctuations in the number of carriers, thus making the power
spectral density proportional to the signal.
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Figure 4.46: An high-pass filter (HPF).

the resistor R will instantaneously increase to the value of the amplitude of the
step applied. This is because, for a short time interval, we are considering the
behaviour of the capacitor at high frequency, where it can be assumed to be a
short-circuit. After that, an exponentially decreasing behaviour starts, since the
voltage across the capacitor C will exponentially increase. Deriving this step
response, it is then possible to determine the delta function response of this
filter, that will be:

h(t) = δ(t)− 1

T
e−

t
T u(t)

where T is the time constant of the filter.

Figure 4.47: Step response (on the left, the input is dotted, the voltage across
the capacitor is dashed and the voltage across the resistor is solid) and delta-
function response (on the right) of an high-pass filter.

In the frequency domain, from the analysis of the circuit, we can write its
transfer function as:

H(s) =
sT

1 + sT
= 1− 1

1 + sT
.

It is important to notice that since:

H(0) = 0

then we will have that: ∫ +∞

0

h(t) dt = 0

and therefore the area underlying the Dirac delta must be equal to the area
that is above the negative increasing exponential function. The autocorrelation
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of the weighting function can then be calculated as:

khh(τ) =

∫
h(t)h(t+ τ) dt =

=

∫ +∞

0

[
δ(t)− 1

T
e−

t
T

]
·
[
δ(t+ τ)− 1

T
e−

t+τ
T

]
dt

but since for positive values of τ the delta function δ(t + τ) is sampling the
other response h(t) in part in which it is for sure identically equal to zero, we
can write:

khh(τ) = −
∫ ∞

0

[
δ(t)− 1

T
e−

t
T

]
· 1

T
e−

t+τ
T dt =

= −e
− τ
T

T
+
e−

τ
T

T 2

∫ ∞
0

e−
2t
T dt = −e

− τ
T

2T

and since this function is defined as an even function (because we do not mind
which replica of the delta-function response we are actually shifting in time),
we obtain:

khh(τ) = −e
− |τ|T

2T
.

However, since the value in zero of the autocorrelation khh(0) must be equal
to the integral of the two weighting functions that are perfectly overlapping,
in this position also the delta-functions that are present in the two replicas of
the weighting function are overlapping; this means that one of them will sample
the other and it then will be present in the autocorrelation of the weighting
function, giving as a correct result:

khh(τ) = δ(τ)− e−
|τ|
T

2T
.

Figure 4.48: Autocorrelation of the weighting function of an high-pass filter.

At the output of this filter, therefore, the mean square value of the noise,
given a certain input noise autocorrelation Rxx(τ), will be:

n2
y =

∫
Rxx(τ)khh(τ) dτ = Rxx(0)− 1

2T

∫
Rxx(τ)e−

|τ|
T dτ.

A signal with relatively large correlation time, therefore, will make the contri-
bution of the second term, that is negative, relevant, thus reducing the mean
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square value of the output noise, as desired. On the other hand, if the correla-
tion time of the input noise is small, it will be almost exclusively sampled by
the delta-function and not significantly reduced by the exponential parts.
To study the effect of this filter on the noise, we can consider an input noise with
a rectangular autocorrelation Rxx(τ) with constant amplitude n2

x extended over
a certain interval from −Tn to Tn. In this case, since both the autocorrelation of
the input noise and the autocorrelation of the weighting function are two even
functions, we can write the mean square value of the output noise as:

n2
y = n2

x −
1

T

∫ Tn

0

n2
xe
− τ
T dτ = n2

xe
−TnT .

For a white or uncorrelated noise, the time Tn will be small; in particular:

Tn � T ⇒ n2
y ' n2

x

and thus the filter has little effect on this kind of noise. On the other hand, for
a low-frequency noise:

Tn � T

this filter will be effective in reducing this noise. In the frequency domain, there-
fore, this filter will reject all the components that will be below the following
cut-off frequency:

1

2πT
.

4.8.2 Effects on pulsed signals

Figure 4.49: Effect of an high-pass filter on a single pulse.

We can now investigate the effect of this device on a pulsed signal, that
is the prototype of an high-frequency signal. First of all, we can see that the
“step” part of this pulse will be perfectly reproduced at the output, increasing
abruptly the output voltage. Then, an exponential discharge of the capacitor
will start, decreasing the value of this voltage. At the end of this pulse, we
have another step, that will be reflected in a step of the same amplitude at
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the output. However, due to the presence of the exponential discharge, we are
now at a voltage that is lower than the initial one, therefore this step will bring
the output at a certain negative voltage proportional to the amplitude of the
exponential discharge that has taken place. Then, the exponential discharge will
continue, bring the output from a certain negative voltage again toward zero.
The length of this exponential tail will be related to the time constant of the
filter TF (previously indicated with T ), while the “undershoot” at the end of
this pulse will be related both to this time constant and to the duration Tp of the
pulse. Since the DC transfer of this high-pass filter is zero, then the net area of
the pulse will be exactly equal to zero and therefore the area of the output signal
actually related to the pulse will be equal to the area of the negative exponential
tail related to the discharge of the capacitor. This behaviour is represented in
Figure 4.49.

Figure 4.50: Effect of an high-pass filter on two subsequent pulses.

In general, this long exponential tail can be completely neglected, unless we
have more than one pulse coming to our filter; in this case, the arrival time of
the second pulse is important. In fact, if the second pulse comes when the expo-
nential tail of the first one has completely decayed (thus, the pulses are coming
with a small repetition rate), nothing changes in the behaviour of the device:
the output voltage is again at zero when the second pulse arrives. However, if
the second pulse arrives when the system has not already relaxed (this means
that the exponential tail of the first pulse is not again at zero), the system will
undergo a positive step of amplitude equal to the initial one but, since this step
is starting from a certain negative voltage, it will reach a maximum voltage
that is lower than the one reached by the first step. Then, we will have again
the exponential decay due to the discharge of the capacitor and, at the end of
the second pulse, again a negative step. This step will bring the output at a
negative voltage that is in magnitude higher than the previous one, determining
an even longer exponential tail that can become relevant for subsequent pulses.
This dangerous effect is called the pile-up of the system.
This superposition of the exponential tails of the pulses, at the end, gives prob-
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lems when the repetition rate of the pulses is high. The error we commit as a
consequence of this effect is in fact proportional to the repetition rate of the
signal (assuming to have a periodic input signal). After a certain transient, at
the end this will determine a variation of the baseline of the signal as in Figure
4.50. In fact, in an high-pass filter the maximum penalization of the input will
be related to the DC component of the input signal, that is associated to its
average value. This means that we are bringing the average value of the output
signal at zero. As a general rule, therefore, we must be extremely careful in
using high-pass filter, since almost any signal will be modified by them.

4.9 Baseline restorers

Figure 4.51: A signal superimposed to a slowly varying baseline.

An alternative for measuring a signal superimposed to a slowly varying base-
line could be to measure the baseline when the signal is not present and, then,
subtract this measurement from the noisy sample of the signal. This is obviously
a time-variant filter and it makes sense if and only if the noise is correlated be-
tween the two samples. This filter is called a baseline restorer and it can be
represented as in Figure 4.52.

Figure 4.52: A baseline restorer.

The simplest implementation of this filter consists in a capacitor C, a resistor
R and a switch S, where this last element is able of controlling the different
phases of this device. When we want to measure the baseline of the signal,
therefore, the switch S will be closed. In this time interval, there is not any signal
coming to the device and therefore we are measuring only the low-frequency
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noise at the input. Considering this noise to be, for example, just a constant
offset, after a certain transient the voltage across the resistor R will be equal to
this offset voltage. The next phase, then, is to subtract this baseline from the
signal, and this can be done when the switch is open. In this time interval, at
the input of the device we have the signal superimposed to the noise, therefore
opening the switch the voltage across the capacitor remains unchanged and
equal to the value it had at the end of the previous phase. This makes the
output voltage equal to the voltage at the input (determined by the input and
the baseline) minus the voltage across the capacitor (exclusively determined by
the baseline), giving at the output the input voltage without the baseline.
This device will work perfectly in the case of constant noise, where the noise
is completely self-correlated. Decreasing the autocorrelation of the noise, the
baseline between the two samples will be increasingly different, thus making
this network work worse and worse.

Figure 4.53: Weighting function of a baseline restorer.

To determine the weighting function of a baseline restorer, we must consider
that the output voltage of the device can be considered as equal to the difference
between the input voltage and the voltage across the capacitor:

Vout = Vin − VC .

Remembering that the weighting function is the response of the system at time
t to a delta-function applied at time τ , we can study this behaviour for the
voltage VC across the capacitor and, then, derive from it the behaviour of the
output. When the switch is open, the input voltage will be equal to the output
voltage:

Vin = Vout

and thus it will determine, in the delta-function response of the device, a delta-
function; this behaviour holds for any arrival time τ of the input delta-function
within the time interval in which the switch S is open. When the switch is closed,
this system is identically equal to a low-pass filter, thus giving a decreasing
exponential behaviour until the time instant at which the switch opens; after
that time interval, the delta-function response is constant. From the definition of
weighting function, then, we can derive the behaviour represented in Figure 4.53.
Since we have already seen that the output voltage is given by two contributions,
one that is positive and that is related to the input voltage and the other that is
negative and that is related to the voltage across the capacitor, we can say that
the positive delta function in the represented weighting function will come from
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the contribution of the input voltage, while the negative exponential behaviour
will come from the voltage across the capacitor. This means that the output
at a certain time instant is determined by the input at the same time instant
minus whatever we have previously stored in the capacitor (weighted by an
exponential). It is important to remember that the time constant of this negative
exponential must be smaller than the correlation time of the input noise, since we
want to have correlated noise samples in order to perform an effective reduction
of the noise.
From the weighting function represented in Figure 4.53, we can see that it is
different from the one of an high-pass filter since we are decoupling the moment
in which we are sampling the input signal (consisting in the pulse superimposed
to the baseline) from the moment in which we are storing the baseline (that is
actually the noise).

Figure 4.54: Autocorrelation of the weighting function of a baseline restorer in
two limiting cases.

By definition, then, the autocorrelation of the weighting function of the
baseline restorer can be written as:

khh(τ) =

∫
w(t, γ)w(t, γ + τ) dγ.

In the time τ = 0, then, the two delta-functions of the weighting function are
overlapped and, therefore, we obtain a delta-function plus the integral of the
two exponentials. For τ > 0, the two delta-functions are no longer overlapped,
therefore we have to calculate only the correlation between the two negative
exponentials, that is again a decreasing exponential. If we now assume that
the temporal separation between the delta-function and the exponential in the
weighting function, that is defined as t0, is much larger than the time constant
T of the filter:

t0 � T

then this exponential in the autocorrelation will completely decay before having
an overlapping between one of the two delta-functions and the other exponen-
tial, making the autocorrelation equal to zero for a certain interval. At some
point, then, we will have that one of these delta-functions will be overlapping
to the decaying exponential, determining a negative exponential contribution to
the autocorrelation.
In the other limiting case, the distance between the delta-function and the ex-
ponential is shorter than the time constant of the filter:

t0 � T
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and thus the previously described sampling of the negative exponential will take
place before the positive exponential decay is completed.
To evaluate the effect of this filter on the noise, we can write the mean square
value of the output noise as:

n2
y =

∫
Rxx(τ)khh(τ) dτ.

In the case of an high-frequency noise, the mean square value of the output
noise n2

y will be even larger than the mean square value of the input noise n2
x,

since we are subtracting uncorrelated samples, thus adding their variances. In
this case, in fact, we are near to the delta-function that is present in khh(0),
giving a positive contribution to the output noise.
On the other hand, if we consider a low-frequency noise, for which the correla-
tion time is much longer than the distance between the delta-function and the
negative exponential in the weighting function:

Tn � t0

then the negative exponential parts of the autocorrelation of the weighting func-
tion will reduce the mean square value of the output noise with respect to the
one of the input noise, making this filter effective. This exclusively due to the
fact that the negative exponential tails of the autocorrelation of the weighting
function come into play.

Figure 4.55: Fourier transform of the weighting function for a baseline restorer.

In the frequency domain, the Fourier transform of the weighting function for
a baseline restorer can be represented as in Figure 4.55. In this case, setting for
the sake of simplicity the time instant of interest equal to zero:

t = 0

from the time-reversal property we can obtain the following transfer function:

W (s) = 1− e−st0

1− sT



4.9. BASELINE RESTORERS 251

where the first, constant contribution will come from the positive delta-function,
while the second contribution will come from the shifted and time-reversed
contribution of the negative exponential. At low frequencies, the exponential
that is present in this expression can be simplified as:

e−st0 ' 1− st0

thus obtaining the following low-frequency approximation of the filter:

W (f) ' −j2πf(T − t0).

Figure 4.56: Effect on a signal of a high-pass filter (on the left) and of a baseline
restorer (on the right).

In Figure 4.56, it is possible to observe a comparison between the behaviour
of an high-pass filter, that will determine a little negative overshoot of the signal
due to the negative discharge of the filter, and the one of a baseline restorer,
that works perfectly in this case of constant baseline. In all real cases, even
with DC coupled electronics, the weighting function is generally not extended
to zero, because an intrinsic high-pass filter is present in any operation due to
the fact that this operation started at some time and from a zero value. This is
the reason why we always have to manually set to zero the baseline.

A different type of filter is the correlated double sampling. In this device, we
have decided to sample the noise in one point and, then, to subtract it from the
sample that we have taken considering the signal and the noise. The weighting
function, therefore, will just consist in two delta-functions, one centred in the
time in which we have to sample the signal and the noise and the other, with
negative amplitude, when we want to sample just the noise. This methods holds
if the noise is strongly correlated (thus being a low-frequency or constant noise)
and it is generally applicated, for example, in digital cameras. The weighting
function, then, can be written as:

w(0, τ) = δ(τ)− δ(τ + tS)
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Figure 4.57: A correlated double sampling.

thus its Fourier transform, in the frequency domain, will be:

W (s) = 1− estS → W (t, f) = 1− ej2πftS = 1− cos(2πftS)− j sin(2πftS).

This allows us to calculate the square modulus of the transform of the weighting
function as:

|W (t, f)|2 = [1− cos(2πftS)]
2

+ sin2(2πftS) = 2 [1− cos(2πftS)] .

In the low-frequency limit:

|W (f)| ' 2πftS ⇒ |W (t, 0)|2 ' 0.

4.10 Amplitude modulation (AM) and synchro-
nous detection

In this description of the types of noise and the solutions we can adopt to
fight it, only one case is missing: the one of a low-frequency incoming signal
superimposed to a low-frequency noise. The idea, in this case, is to move the
frequency of the signal far from the region of frequencies in which we have the
noise and, then, use a filter to improve the signal-to-noise ratio.
If the signal is at the DC level and it is buried into a low-frequency noise,
in fact, an high-pass or a band-pass filter become useless. From the field of
telecommunications, however, we can consider that if we are able to move the
spectrum of the signal to higher frequencies, with an operation that is called
modulation (or, for the dual operation, demodulation), the signal-to-noise ratio
would improve. An high quality band-pass filter, then, can be used to recover
the signal once it has been moved to another frequency region.

The first example of modulation that we can study is the amplitude modu-
lation (AM), that is schematically represented in Figure 4.58. In this case, the
amplitude of a carrier wave c(t) is modified using a modulating signal x(t). The
resulting amplitude of the modulated signal is therefore the product between
the amplitudes of the two incoming signals:

m(t) = x(t)c(t)
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Figure 4.58: Amplitude modulation.

therefore in the frequency domain the resulting signal will be the convolution
of the two incoming ones:

M(f) = X(f) ∗ C(f).

This method was originally developed for telephone and radio communications,
since transmitting signal is much simpler if they are moved at higher frequency
regions. In our description, we will consider only sinusoidal carriers c(t).

Figure 4.59: Amplitude modulation both in the time and in the frequency do-
main.

Given therefore a generic (and generally slowly changing) signal waveform
and a sinusoidal carrier at much higher frequency, we can obtain a signal in
the time domain that can be represented as in Figure 4.59. In the frequency
domain, the signal will have a certain bilateral Fourier transform that, being a
slowly changing signal, will be mainly concentrated in the low-frequency region
and it will have a certain width, while the Fourier transform of the carrier,
being a perfectly sinusoidal wave, will be only two delta functions centred at
the corresponding frequency. The modulated signal, being the convolution of the
two original signals in the frequency domain, will be equal to the spectrum of
the original signal but now centred at frequency ±fc, where fc is the frequency
of the carrier.
We can thus write the sinusoidal carrier in the time domain as:

c(t) = A cos(ωct+ φc)
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while in the frequency domain it will be:

C(f) =
A

2

[
ejφcδ(f − fc) + e−jφcδ(f + fc)

]
.

Given therefore x(t) to be the slowly varying signal and X(f) to be its spectrum,
we can write the modulated signal as, in the time domain:

m(t) = x(t)c(t)

while in the frequency domain it will be:

M(f) =
A

2

[
ejφcX(f − fc) + e−jφcX(f + fc)

]
.

This property can be clearly understood considering that a multiplication in the
time domain corresponds to a convolution in the frequency domain. The carrier
therefore will have, in the frequency domain, some complex exponential terms
that will be related to the phase of this oscillation while the convolution of the
signal with the carrier will determine, in the frequency domain, a shift in the
spectrum of the original signal.

Figure 4.60: Demodulation of a signal.

Figure 4.61: Circuit originally used for an incoherent detection.

The inverse operation, needed for recovering the signal in its original band-
width, is called demodulation. From an historical point of view, this was origi-
nally done in a process called incoherent detection with a circuit that is repre-
sented in Figure 4.61. This method used a diode and a low-pass filter to remove
the harmonics coming from the modulation of the signal. However, this method
was quite inaccurate, therefore a coherent approach exactly equal to the modu-
lation process has been developed. We can thus, as represented in Figure 4.60,
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multiply the modulated signal m(t) by another reference signal completely iden-
tical to the carrier c(t), thus obtaining a demodulated signal:

d(t) = m(t)c(t) = x(t)c2(t) = x(t)A2 cos2(ωct+ φc) =

= A2x(t)

[
1 + cos(2ωct+ 2φc)

2

]
=

=
A2

2
x(t) +

A2

2
x(t) cos(2ωct+ 2φc)

to which we can apply a low-pass filter. This filtering operation will obviously
cancel the residual oscillation at twice the frequency of the carrier, thus giving:

y(t) =
A2

2
x(t)

that is clearly proportional to the original signal. In the frequency domain:

D(f) =
A2

2
X(f) +

A2

4

[
ej2φcX(f − 2fc) + e−j2φcX(f + 2fc)

]
where we have two replicas of the original spectrum that are shifted in frequency
and that can be cancelled using the low-pass filter, obtaining:

Y (f) =
A2

2
X(f).

This procedure can be represented as in Figure 4.62.

Figure 4.62: Demodulation operation.

It is important to notice that, in this description of the demodulation oper-
ation, we are assuming to be using exactly the same reference signal c(t) that
we used as a carrier in the modulation operation. What does it happen if this is
not the case? We can now consider the demodulation operation with a slightly
difference reference signal both in frequency and in phase:

wR(t) = B cos[(ωc + ∆ω)t+ φc + ∆φ].

Remembering the following property:

cos(α) cos(β) =
1

2
[cos(α+ β) + cos(α− β)]
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we can write the demodulation signal in the time domain as:

d(t) =
AB

2
x(t) {cos[(2ωc + ∆ω)t+ 2φc + ∆φ] + cos(∆ωt+ ∆φ)}

and we can immediately notice that the high-frequency oscillation will be filtered
by the low-pass filter, thus giving:

y(t) = ABx(t)
cos(∆ωt+ ∆φ)

2
.

We are thus obtaining two possible source of errors:

• a phase error, related to ∆φ, that can give a reduction of the amplitude
of the signal from AB/2 to AB cos(∆φ)/2;

• a frequency error, related to ∆ω, that gives a residual oscillatory behaviour
that, in the frequency domain, will shift the spectrum X(f) symmetrically
at higher (in modulus) frequencies.

Both these types of errors are extremely dangerous and, therefore, it is manda-
tory to reduce them as much as possible. The reference signal. therefore, must
be locked both in frequency and in phase to the carrier, thus giving rise to the
so called synchronous (or coherent) detection. In principle this is feasible, espe-
cially in labs, even though with some difficulties. In telecommunications, it is
much more difficult if not impossible, even though some methods have been de-
veloped to retrieve the carrier from the signal using suitable techniques. Due to
its properties, the demodulator is also called a phase-sensitive detector (PSD12)
and it will consist in a multiplication stage followed by a low-pass filter.

Figure 4.63: Demodulation operation and corresponding signals.

We want now to study in details this recovery stage using a weighting func-
tion approach, thus adopting the point of view of the signal. Given the scheme
of a phase-sensitive detector as the one represented in Figure 4.63, we can write
the signal at the output of the low-pass filter as the integral of the demodulation
signal at its input multiplied by the weighting function of the filter:

y(t) =

∫
d(τ)wLP (t, τ) dτ.

At this level, notice that we are still considering a generic low-pass filter and
the related, not further specified, weighting function. However, we know that

12This must not be confused with the power spectral density that we have studied before:
they are totally different things.
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the demodulation signal can be written as the product between the incoming
modulated signal x(t) (not to be confused with the slowly oscillating original
signal, defined using the same variable, that we described in the modulation
stage) and the reference signal:

d(t) = x(t)wR(t)

thus obtaining:

y(t) =

∫
x(τ)wR(τ)wLP (t, τ) dτ =

∫
x(τ)w(t, τ) dτ

where we have defined the weighting function of this phase-sensitive detector
as:

w(t, τ) = wR(τ)wLP (t, τ).

This is a direct consequence of the properties that we have studied for the
weighting function of a generic filter. In the frequency domain, from Parseval’s
theorem, we can write:

y(t) =

∫
x(τ)w(t, τ) dτ =

∫
X(f)W ∗(t, f) df

and since the product in the time domain is the convolution in the frequency
domain we have that:

WR(f) = F{wR(τ)}, WLP (t, f) = F{wLP (t, τ)}

W (t, f) = WR(f) ∗WLP (t, f).

This weighting function and the associated Fourier transform can be represented
as in Figure 4.64.

Figure 4.64: Weighting function of the phase-sensitive detector.

In the representation of this weighting function, we have assumed the weight-
ing function of the low-pass filter to be equal to an exponential. We can imme-
diately notice that even though the low-pass filter may be a linear and time-
invariant filter, since the weighting function depends on the reference signal that
depends on time this detector will act as a time-variant filter, thus giving, for
a stationary noise at the input, a non-stationary noise at the output. In the
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particular case of a phase-sensitive detector with a linear and time-invariant
low-pass filter, in the frequency domain the output signal can be written as:

Y (f) = WLP (t, f)D(f) = WLP (t, f) [X(f) ∗WR(f)] .

Since the reference signal wR(t) is a periodic signal, then the modulus of its
Fourier transform |W (f)| will represent the frequency components that give
significant contributions in the baseband.
We can now study the behaviour of a phase-sensitive detector as an optimum
filter. In particular, we can take the case of a simple constant initial signal of
amplitude A, for which the modulated signal at the input of the phase-sensitive
detector will be:

x(t) = A cos(ωct).

In this case, if we assume the low-pass filter to be a linear and time-invariant
integrator, since the delta-function response of this filter is a step with a certain
gain K then the weighting function of this filter will be a time-reversed and
shifted step with amplitude K:

wLP (t, τ) = Ku(t− τ).

This means that the weighting function of the overall phase-sensitive detector
will be13:

w(t, τ) = K ′u(t− τ) · cos(ωRτ)

but since we know the expression of the incoming signal, if the frequency of the
carrier is equal to the frequency of the reference signal we have that:

ωc = ωR : w(t, τ) ∝ x(τ).

We are thus in a case of optimum filtering and, for this kind of signal, this
phase-sensitive detector with a linear and time-invariant integrator is the op-
timum filter. In the general case, where the input signal is not constant and
the low-pass filter is not a linear and time-invariant integrator, being instead a
generic low-pass filter with an exponential weighting function14, then the phase-
sensitive detector will only be the quasi-optimum filter, however giving an higher
flexibility.
For the case of a linear and time-invariant integrator, the output can be written
as:

y(t) = K

∫ t

−∞
x(τ)wR(τ) dτ.

We can immediately notice that, in the limit for t → ∞, this would have been
the cross-correlation between these two signals in zero, since they are not shifted
one with respect to the other:

y(t) ' K
∫ +∞

−∞
x(τ)wR(τ) dτ = KxwR(0).

13Considering that, in principle, it could have also a different gain K′.
14Notice that if the time constant of this exponential is big enough, the exponential decay

in the envelope of the weighting function is almost negligible with respect to the period of the
oscillations and thus it is very similar to the one we have just described for the case of the
linear and time-invariant integrator.
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This is only an approximation since in reality this integral will end at t, that
is clearly finite. However, from this we can understand the y(t) can be seen as
an estimate of the cross-correlation between the input and the reference signals
and therefore the maximum output will be achieved when the two signals, that
are oscillating, have the same frequency and the same phase. Moreover, if we
assume now a certain noise n1(t) superimposed to the signal x(t) and a certain
noise n2(t) superimposed to the reference signal wR(t) (note that these will only
be realizations of this stochastic process), the we get that:

y(t) ' K(x+n1)(wR+n2)(0) = KxwR(0) +Kxn2(0) +Kn1wR(0) +Kn1n2(0)

and if each noise term is uncorrelated to the signal, to the reference signal and
to the each other, then we get again:

y(t) ' KxwR(0)

thus actually having reduced the noise contribution thanks to this filter.
Assuming, for example, a simple RC filter15, in this case we have:

y(t) =
1

TF

∫ t

−∞
x(τ)wR(τ)e

− t−τTF dτ

that is again the cross-correlation KxwR(0) estimated over a certain time TF
that is equal to the time constant of the filter.
The same discussion can be made also in the frequency domain, where we have
that:

D(f) = F{x(t)wR(t, τ)} = X(f) ∗WR(f) =

∫
X(ν)WR(f − ν) dν.

Assuming then that the output low-pass filter will select only the low-frequency
components of this demodulated signal, that will be place around the origin of
the frequency axis:

Y (f) ' D(0) =

∫
X(ν)WR(−ν) dν

where we have also considered that:

WR(−ν) = W ∗R(ν).

We have thus found, also in this case, the cross-correlation behaviour of the
output signal and thus the maximum output signal will be obtained when the
input signal and the reference signal are correlated.

We can now study the behaviour of the noise at the output of this phase-
sensitive detector. Considering that a certain realization of the input noise will
be multiplied by the reference signal, we will obtain a certain “demodulated”
signal that is nothing but a noise realization enveloped in an oscillating func-
tion. This means that even if the input noise is stationary, the output noise of
this device will be non-stationary, thus exhibiting a time-dependent behaviour.
In particular, in this case, since we are enveloping this noise realization in an

15That is clearly not a linear and time-invariant integrator, thus having a different weighting
function from the signal.
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Figure 4.65: Behaviour of the noise in a phase-sensitive detector.

oscillating function, the behaviour of the autocorrelation of this noise will be
periodic and thus this noise is called cyclostationary. The autocorrelation of the
“demodulated” noise can be written, according to its definition, as the ensemble
average of the “demodulated” noise signal on many realizations:

Rdd(t, t+ τ) = nd(t)nd(t+ τ).

However, from behaviour of the filter we are considering, we can say that this
“demodulated” term will be equal to the product between the input noise (that
is a stochastic process) and the reference signal (that is deterministic):

nd(t) = nx(t) · wR(t)

thus giving the fact that this ensemble average will act only on the input noise:

Rdd(t, t+ τ) = nx(t)nx(t+ τ)wR(t)wR(t+ τ) = Rxx(τ)wR(t)wR(t+ τ)

where in the last passage we have recognized the definition of the autocorrelation
of the input noise. In particular, therefore, we can write the expression of the
“demodulated” noise as:

τ = 0 : n2
d(t) = n2

xw
2
R(t).

Since the output filter averages over many period of the reference signal16, we
can write the output autocorrelation, that thus will independent from the time
t, as the time average of the autocorrelation of the “demodulated” noise:

Ryy(t, τ) ' Ryy(τ) ' 〈Rdd(t, t+ τ)〉 = Rxx(τ)〈wR(t)wR(t+ τ)〉

where in the last equivalence we have considered that the autocorrelation of
the input noise is independent from the time t. From the definition of temporal
average, then, we can write that:

Ryy(τ) ' Rxx(τ) lim
T→+∞

1

2T

∫ T

−T
wR(t)wR(t+ τ) dt

and recognizing the autocorrelation of the reference signal, that is a power signal,
we can write:

Ryy(τ) ' Rxx(τ) ·KwRwR(τ).

16In fact, being a low-pass filter that is used to get rid of the frequencies above twice the
frequency of the carrier, it must be averaging over a time that is significantly larger than half
a period of the carrier.
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Considering now a sinusoidal reference signal and assuming that its phase is
identically equal to zero:

wR(t) = B cos(ωct)

we can write its autocorrelation as:

KwRwR(τ) = lim
T→+∞

B2

2T

∫ T

−T
cos(ωct) cos(ωc(t+ τ)) dt =

= lim
T→+∞

B2

2T

∫ T

−T
cos(ωct) · [cos(ωct) cos(ωcτ)− sin(ωct) sin(ωcτ)]

but noting that: ∫ T

−T
cos(x) sin(x) dx =

∫ T

−T

sin(2x)

2
dx = 0

due to the symmetry of the sine function, the second of the previous integrals
will vanish. This will thus give us:

KwRwR(τ) = B2 cos(ωcτ) lim
T→+∞

1

2T

∫ T

−T
cos2(ωct) dt =

= B2 cos(ωcτ) lim
T→+∞

1

2T

∫ T

−T

1 + cos(2ωct)

2
dt =

=
B2

2
cos(ωcτ).

The time correlation of a sinusoidal signal, therefore, is once again a sinusoidal
signal.
In the frequency domain, since wR(t) is a periodic signal, thus being a power
signal, the associated power spectral density SwR(f) will be an average power
spectral density, since we have cut the power signal, obtaining an energy signal
between −T and T :

wTR(t) = wR(t) · rect(2T )

that will be then averaged for T →∞. In the frequency domain, therefore, this
truncated signal will give17:

WT
R (f) =

B

2
[δ(f − fc) + δ(f + fc)] ∗ 2T sinc(2πfT ) =

=
B

2
· 2T · [sinc(2π(f − fc)T ) + sinc(2π(f + fc)T )]

and taking the square modulus, since the cross product will vanish in the fol-
lowing limit:

|WT
R (f)|2 =

B2

4
· (2T )2 ·

[
sinc2(2π(f − fc)T ) + sinc2(2π(f + fc)T )

]
17Considering that:

F [rect(2T )] = 2T sinc(2πfT ).



262 CHAPTER 4. SIGNAL RECOVERY

we obtain the following expression for the power spectral density18:

SwR(f) = lim
T→+∞

1

2T
|WT

R (f)|2 =
B2

4
[δ(f − fc) + δ(f + fc)]

that we could have directly obtained by Fourier transforming the expression of
the autocorrelation of the reference signal:

SwR(f) = F{KwRwR(τ)}.

We can thus can write:

Rdd(τ) = Rxx(τ)KwRwR(τ) ⇒ Sd(f) = Sx(f) ∗ SwR(f).

From the autocorrelation of the reference signal or, alternatively, in the fre-
quency domain, from the power spectral density of the reference signal we can
write the autocorrelation of the output noise in the demodulation stage as:

Rdd(τ) = Rxx(τ)
B2

2
cos(ωcτ)

while its power spectral density will be:

Sd(f) =
B2

4
[Sx(f − fc) + Sx(f + fc)] .

This means that, in this device, we are modulating the signal but we are also
modulating the noise. We have now to take into account the presence of the
low-pass filter.

Figure 4.66: From the power spectral density of the input noise to the power
spectral density in the demodulation stage: the shadowed (orange) region will
be the only region that is allowed to pass in the low-pass filter.

18It is important to notice that in this limit the maximum amplitude of the sinc function is
in 2T , that will tend to infinity in the limit, while the first zero of the sinc function is in 1/2T
that will tend to zero in this limit. This means that the sinc function, in this limit, is tending
to a delta-function and we have to impose that the area below the sinc function:∫ +∞

−∞
sinc2(πfα) df =

1

α

is equal to the amplitude of the delta-function.
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The effect of the low-pass filter is represented, in the frequency domain, in
Figure 4.66. It is important to notice that if we would have placed it directly on
the input power spectral density Sx(f), this would have been totally ineffective,
since in that region the input power spectral density associated to the noise is
quite high. On the other hand, placing it after the demodulation stage, we can
obtain a significant reduction of the noise in our device.

Figure 4.67: Effect of the low-pass filter on the input power spectral density.

From a different perspective, we can evaluate the regions of the input power
spectral density that are sampled by the low-pass filter as in Figure 4.67. In
this case, instead of moving the centre of the input power spectral density at
±fc, the demodulation stage is moving the central frequency of the low-pass
filter to ±fc, thus demonstrating that we are sampling regions in which the
power spectral density of the noise is much lower. These are, therefore, the only
components of the input noise that will contribute to the output noise, stating an
important meaning for the weighting function of the filter. The output noise, in
fact, will be the correlation between the input noise and the weighting function.
The only noise components that can contribute, therefore, will the ones that are
correlated to the weighting function, thus being the ones at ±fc.
We can now consider the equivalent noise bandwidth of the low-pass filter to be
extended in the range [−BWn, BWn]. Since this output low-pass filter has, in
general, a quite narrow band, we can approximate the power spectral density in
the demodulation stage with its value at zero frequency:

Sd(f) ' Sd(0) ∈ [−BWn, BWn].

Under these approximations, the mean square value of the output noise can be
written as:

n2
y =

∫
Sd(f)|WLP (t, f)|2 df '

∫ BWn

−BWn

Sd(0) df =

= Sd(0) · 2BWn = 2BWn ·
B2

4
[Sx(fc)− Sx(−fc)] =

= B2 ·BWn · Sx(fc)

where, from the expression of Sd(f), we considered that:

Sd(0) =
B2

4
[Sx(fc) + Sx(−fc)]

and that the input power spectral density is an even function:

Sx(fc) = Sx(−fc).
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We can thus write the signal-to-noise ratio for a constant input signal. This
input signal will give a modulated signal that can be written as:

x(t) = A cos(ωct)

thus giving the following output signal (assuming to not have any phase error):

y(t) =
AB

2

while the mean square value of the output noise will be:

n2
y = B2 ·BWn · Sx(fc).

From these expressions, we can write the signal-to-noise ratio as:

S

N
=

A√
4Sx(fc)BWn

.

We can now compare this result with the one that we would have obtained
directly applying, to the same signal with the same input noise, a low-pass
filter:

S

N
=

A√
2Sx(0)BWn

.

Comparing these two expressions, we can see that the synchronous detection is
useful if and only if the power spectral density at the carrier frequency is much
lower than its DC value:

Sx(0)� Sx(fc).

This is, for example, the case of the flicker noise, for which this kind of detection
will be particularly effective. On the other hand, in the case of white noise, where
the power spectral density is constant, it will be only worsening the situation.
Moreover, it is important to consider that the modulation stage must be inserted
before all the relevant low-frequency noise sources, that are generally represented
by the amplifiers. If this is not the case, in fact, this kind of filtering is totally
ineffective, since we will be shifting in frequencies with the modulation process
both the signal and the noise. As we have already said, most of the low-frequency
noise will come from the electronics (in particular, amplifiers), therefore we want
to place the modulation stage as early as possible, in particular much earlier
than every amplification stage.

Figure 4.68: Wheatstone bridge with a lock-in amplifier.

These considerations can be applied to the case of a measure with a Wheat-
stone bridge connected to a lock-in amplifier, as in Figure 4.68. In this case, if
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the modulation is done after the instrumentation amplifier, it is almost useless.
Therefore, we need to move the modulation before the amplifier, putting it as
early as possible in the acquisition chain. For example, since we can have a low-
frequency noise also in the resistors that compose the Wheatstone bridge, we
can modulate the voltage that is driving the bridge, as it is represented in the
Figure.

Figure 4.69: Low-light measurement with a lock-in amplifier.

Another possible measurement of this kind is represented in Figure 4.69. In
this case, a continuous-wave laser can be used for fluorescence or spectroscopy
experiments, impinging on a sample and then collecting the light coming from it
with a photodetector. In this acquisition chain, most of the low-frequency noise
will come from the amplifier and from the photodiode that are used for the
acquisition. To modulate the signal as early as possible in this chain, we want
to modulate the optical signal. However, it is not easy to directly modulate the
optical signal by modulating the driving current of the laser, therefore we can do
it with a chopper. A chopper is a sort of disc with empty sectors that is rotating.
The light beam that is impinging on it will then be passed to the sample if we
are in an empty space, while it will be blocked if we are in a solid one. Since
this disc is rotating, on the sample is impinging a sort of square wave optical
signal, whose sinusoidal components can be found by expanding it in a Fourier
series: this will allow us to apply all the previous theoretical results.

4.11 Lock-in amplifiers

In the previous section, we have seen from a theoretical perspective the basic
behaviour of these instruments, that are called lock-in amplifiers (LIAs). They
are powerful tools that make us use a phase-sensitive detector to recover a weak
modulated signal that is buried in the noise. However, several modifications are
made to the basic scheme that we have studied in the previous section in order
to reach high performances.

Figure 4.70: On the left, a switching demodulator; on the right, a generic de-
modulator.
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From the previous theory, we know that the multiplication of the modu-
lated signal with the reference signal can be performed using an analog multi-
plier. These devices, however, are in general complicated and expensive19 and,
since they are non-linear devices, generally introduce distortions. In real sys-
tems, therefore, modulators, demodulators and mixers are generally substituted
by switching demodulators. In these devices, the input signal is periodically
changed of sign (thus being multiplied by +1 or −1) depending on an input
reference signal that controls a voltage controlled switch. This gives, as an ex-
ample, the modulation of the input signal with a square wave of frequency fc
that depends on the driving pattern of the switch. These new devices are better
because they are simpler than analog multipliers, they are less expensive and
they are more precise. In particular, they allow us to neglect almost any noise
or amplitude variation of the carrier signal, since it will only control a switch.
The noise, in this device, will be then mainly introduced by the switches and
it will usually be lower than the one we would have had in multipliers. Last,
the fact that they are less expensive is strongly related to the fact that they are
easier to design and to manufacture. The only possible drawback is that they
will work only with a square wave modulation: does this change significantly
the theory that we have already studied?

Figure 4.71: Above, a sinusoidal reference signal; below, a square wave one.

To do this, we can consider parallelly the case of a sinusoidal reference signal
and of a square wave reference signal that is represented in Figure 4.71. While
in the case of a sinusoidal signal we know that we will obtain two delta-functions
as a Fourier transform, in the case of a square wave function we can calculate
that:

WR(f) =
2B

π

∞∑
k=0

(−1)k

2k + 1
[δ(f − (2k + 1)fc) + δ(f + (2k + 1)fc)] .

It is immediate to notice that we have obtained only odd harmonics of the
frequency of the square wave fc, with a changing sign decaying amplitude. This
can be immediately understood if we consider that each cosine function that is
represent in the Fourier series of the square wave considered will give rise, in
the frequency domain, to a pair of delta-functions.

Assuming now that a sinusoidally modulated constant signal is coming to
the previously described demodulation stage, in the case of the sinusoidal refer-
ence we can write, from the previous theory, the associated demodulated signal

19They are generally realized taking the logarithm of both the signals, adding them together
and then calculating the exponential of the obtained signal; this is clearly a non-linear scheme.



4.11. LOCK-IN AMPLIFIERS 267

Figure 4.72: Above, a sinusoidal demodulated signal; below, a square wave one.

(before the application of the low-pass filter) as:

d(t) = AB cos2(ωct)

while in the case of of the square wave reference signal it is possible to demon-
strate that we will obtain the following demodulated signal:

d(t) = AB| cos(ωct)|

as represented in Figure 4.72. In fact, the multiplication of a sinusoidal signal
with a square wave will give contributions only at the frequency ωc of the carrier,
while we will obtain contributions also for any other harmonic in the case of
the noise. This means that only two “windows”, in the frequency domain, are
passing the signal, while many other (each pair corresponding to a different
harmonic) will be demodulating the noise with decreasing weights.

Figure 4.73: Spectral response of a switching phase-sensitive detector.

The spectral response of a switching phase-sensitive detector can thus be rep-
resented as in Figure 4.73, where we can clearly observe the “windows” through
which the input noise is passing. This spectral response can thus be written,
from a theoretical point of view, as:

W (t, f) = WR(f) ∗WLP (f).

From the expression of the reference signal in the time domain, that can be
written as the Fourier series, with suitable coefficients20 Bk, of the square wave:

wR(t) =

+∞∑
k=0

2Bk cos(kωct)

20These coefficients can be obviously algebraically computed, but this is not really important
in this theoretical reasoning.
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we can transform it, obtaining the Fourier transform of the reference signal:

WR(f) =

+∞∑
k=0

Bk [δ(f − kfc) + δ(f + kfc)] .

In an analogous way, we can calculate the autocorrelation of this reference signal,
that being a sum of sinusoidal terms will be again a sum of sinusoidal terms
without any cross-product:

KwRwR(τ) =

+∞∑
k=0

2B2
k cos(kωct)

and calculating the Fourier transform of this quantity we obtain the power
spectral density of the reference signal:

SwR(f) =

+∞∑
k=0

B2
k [δ(f − kfc) + δ(f + kfc)] .

Figure 4.74: Power spectral density of an input flicker noise and corresponding
power spectral density of the noise in the demodulated signal; the shadowed
(yellow) region is the bandwidth of the low-pass filter.

The power spectral density of the demodulated signal (to which will be then
applied the low-pass filter) can thus be written as:

Sd(f) = Sx(f) ∗ SwR(f)

and it is represented, in the case of the flicker noise, as in Figure 4.74. It will
consist in many different replicas of the flicker noise power spectral density at
the output of the multiplication stage in the demodulator. Since the output
filter, then, will collect noise from all the replicas, we can write the mean square
value of the output noise as:

n2
y =

∫
Sd(f)|WLP (t, f)|2 df

and assuming the noise bandwidth of the output low-pass filter [−BWn, BWn]
to be particularly small and thus the power spectral density of the demodulated
signal to be constant over this bandwidth, we can write:

n2
y ' Sd(0) · 2BWn.
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From the expression of the power spectral density of the demodulated signal,
then, we can write:

n2
y = 2BWn

+∞∑
k=0

B2
k · [Sx(−kfc) + Sx(kfc)] = 4BWn

+∞∑
k=0

B2
kSx(kfc) =

= BWn ·
+∞∑
k=0

(2Bk)2Sx(kfc)

where we can recognize that 2Bk is the amplitude of the various sinusoidal
components of the reference signal. From this last observation, we can see that
this result is consistent with the one that we have obtained for the case of a
sinusoidal modulation and a sinusoidal reference signal.

Figure 4.75: Filtering of the input (flicker noise) power spectral density in the
frequency domain.

This kind of filtering can be represented as in Figure 4.75. Considering there-
fore the various “windows” through which is “leaking” the noise, we obtain that
the mean square value of the noise can be written as:

n2
y = 2

+∞∑
k=0

B2
k · 2BWn · Sx(kfc).

We can notice that in the Figure we have represented the spectral response of
the filter that will only give contributions, in frequency, to the mean square
value of the output noise.
Considering now a sinusoidally modulated constant signal:

x(t) = A cos(ωct)

we can try to calculate the associated signal-to-noise ratio. Assuming that we
do not have any phase error between the carrier and the reference signal, the
output signal21 can be written as:

y(t) = A
2B

π

and the mean square value of the output noise will be:

n2
y = 4BWn

(
2B

π

)2

·
∑

k=1,3,5,...

Sx(kfc)

k2

21By considering that:

〈cos2(ωct)〉 =
1

2
.
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where we have considered that, in this last expression, only odd indices are
relevant, while the other will have a zero amplitude in the Fourier series. Notice
that the quantity of noise collected in this device, that will affect the signal-to-
noise ratio, depends on the value of this sum. Calculating then the signal-to-noise
ratio, we obtain:

S

N
=

A
√

4BWn

∑
k=1,3,5,...

Sx(kfc)
k2

.

We can now study in details a few cases, depending on the value of the noise and
on the type of modulation we are considering. Remembering the right hand-side
graph in Figure 3.29 at page 181, if we are modulating the signal beyond the
noise corner frequency, then the input noise power spectral density Sx(kfc) is
white and we can simply evaluate the previous sum as:

+∞∑
n=0

1

(2n+ 1)2
=
π2

8
' 1.2337

from a well-known result on the series. This means that in the case of a sinusoidal
carrier and a square wave demodulation, we can write the signal-to-noise ratio
as: (

S

N

)
sqd

=
1√
π2/8

(
S

N

)
sin

=
1√

1.2337

(
S

N

)
sin

=
1

1.11

(
S

N

)
sin

thus being clearly lower (even if only for a small factor) than the case of a fully
sinusoidal modulation and demodulation. Assuming, instead of a white noise,
a fully flicker spectrum (thus with a pure 1/f dependency for all the frequen-
cies) this correction factor to be put at the denominator can be calculated to
be 1.026.
Alternatively, we can consider the case of a square wave carrier that is demod-
ulated with a square wave reference. In this case, the amplitude of the signal is
simply constant and equal to AB and thus the signal-to-noise ratio in this case
can be written as:(

S

N

)
fsq

=
π/2√
π2/8

(
S

N

)
sin

=
√

2

(
S

N

)
sin

' 1.41

(
S

N

)
sin

.

Last, we can consider the case of a square wave carrier demodulated with a
sinusoidal reference signal, in this case obtaining, from the evaluation of the
signal-to-noise ratio22:(

S

N

)
sqs

=
4

π

(
S

N

)
sin

' 1.27

(
S

N

)
sin

.

A few issues, however, are possible for a switching phase-sensitive detector.
First of all, it is possible that the average value of the reference signal is different
from zero:

〈wR(t)〉 6= 0.

This will add, in the frequency domain, another “window” centred in f = 0, thus
making the lock-in amplifier to collect also the low-frequency noise thus wasting

22The willing student can try to demonstrate this relationship.
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Figure 4.76: Issues concerning the switching phase-sensitive detector.

all the efforts for changing the bandwidth of the signal from the bandwidth of
the noise (especially in the case of a sinusoidal signal). Moreover, we know that
every noise term that will be placed in the “windows” will then be brought
back, by the demodulation process, in the low-frequency band and will then
pass through the low-pass filter. This is particularly dangerous when we have
an interference that is placed at one of the harmonics of the carrier frequency fc.
To counteract this effect, in general we choose a carrier frequency that is strange
enough to exclude all the interferences that may be coming from the harmonics
of the more common signals (for example, residuals of the rectification of the
AC current in common supply networks).

4.11.1 Analog LIAs

Figure 4.77: Structure of an analog lock-in amplifier.

The structure of an analog lock-in amplifier is represented in Figure 4.77.
First of all, we can observe that we have two filters (one is called “line notch
filter”, the other “main filter”) placed on the incoming signal. These filters are
used to remove part of the noise that is at a bandwidth different from the one of
the signal, thus cleaning as much as possible the incoming signal. Moreover, they
are used since the following circuit has, as any real circuit, a limited dynamic
and we want to avoid to overdrive it. These filters will be effective also in the
case of a square wave modulation. The notch filter will remove the components
at 50/60 Hz and/or its second harmonics, while the main filter can in general
be either a band-pass filter (cleaning the signal and improving the dynamic), a
low-pass filter (in the case of low-frequency carriers) or even may be absent (in
non-demanding applications).
The second element that we can analyse is the reference trigger and the internal
oscillator. In fact, as we have seen before, if the sinusoidal reference has a non-
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zero offset, we are actually demodulating also a noise term at low-frequency,
thus making this amplifier ineffective. We want thus to remove any constant
offset from the reference signal by using a suitable filter called reference trigger.
Moreover, it is possible to use either an external reference (that will be pro-
vided to the instrument) or an internal one (that will be coming from a local,
or internal, oscillator). The reference trigger will be responsible of generating a
trigger signal, for example a square wave signal, that is synchronous with the
reference or at twice the frequency of the carrier.
Again in the line that is providing the reference signal to the demodulation
stage, we can observe the presence of a phase shifter. This element is needed
to make the phase of the reference signal perfectly matched to the one of the
carrier, thus increasing the amplitude of the output signal. In modern systems,
called dual-phase instruments, this is done parallelly demodulating in two differ-
ent ways the incoming signal, one with a reference with a certain phase and the
other with a reference that is in quadrature (thus having a π/2 shift) to the first
one; from these two signals it is then possible to obtain the correct amplitude of
the incoming signal. Alternatively, the phase shifter can be used to adjust the
phase of the carrier signal in order to obtain the maximum output amplitude.
Then, the phase-sensitive detector is in general a square-wave mixer, but more
refined implementations (for example suppressing the third harmonic response)
may be employed.
The last element we can further analyse is the low-pass filter (or the two low-
pass filters, in the case of dual-phase instruments). In general, either first order
or second order filters can be used. Second order filters, having two poles, are
obviously more selective, having an abrupt cut-off frequency. However, in some
applications in which a lock-in amplifier is used in a negative feedback system
they will be adding a pole, possibly giving stability issues to the whole net-
work. At the end, an output amplifier will provide a simple gain, increasing the
sensitivity. Since this last amplifier is DC-coupled, its drift and noise must be
controlled.
Last, we can study the main parameters of this device. The frequency range at
which it is operating is typically between a fraction of hertz to a few MHz (and
up to 200 MHz for radio-frequency lock-in amplifiers). The time constant of the
output low-pass filter will be between a few milliseconds and a few hundreds
of seconds. Last, we define the dynamic reserve the ratio between the largest
“tolerable” noise signal and the full scale signal, expressed in decibels. Typical
values for this quantity are lower than or equal to 60 dB, thus meaning that at
the input of the lock-in amplifier we can have a noise that is up to 100 times
larger than the incoming signal.

4.11.2 Digital LIAs

The digital23 implementation of a phase-sensitive detector, that is represented
in Figure 4.78, is actually quite complicated. In this case, the reference signals
are pre-computed with an higher precision, thus giving a better performance of
the device, in particular with respect to offsets and harmonics. In particular,
they can reach a dynamic reserve that is up to 100 dB, allowing also much lower
frequencies for the carriers (up to some mHz). Moreover, their design is more

23This part of the program has not been presented during lectures.
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Figure 4.78: Structure of a digital lock-in amplifier.

flexible and not having an output amplifier they are also more stable.
It seems, therefore, that digital lock-in amplifiers are far better than analog ones.
However, analog lock-in amplifiers are still used in some cases. For example, they
can deal with the demodulation at high frequencies (up to the MHz regime),
since the frequency of the carrier is limited to a few MHz in digital devices. Then,
they are suitable for all those applications that require short time constants and
mid-range frequencies (in the order of 100 kHz) and, also, in feedback loops.
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Chapter 5

Exercises

5.1 Review of the Laplace transform, linear cir-
cuits and Bode plots

5.1.1 The Laplace transform and its properties

Given a certain signal f(t), we can define its Laplace transform F (s) as:

F (s) = L (f(t)) =

∫ +∞

0

f(t) · e−st dt

where passing a function from the time domain to the frequency domain we
can introduce the Laplace operator s, that has the dimension of the inverse of
a time:

s = [s−1].

We can immediately understand that, from the linearity of the integral, the
Laplace transform is linear:

L (αf(t) + βg(t)) = αF (s) + βG(s)

where:
L(f(t)) = F (s), L(g(t)) = G(s).

We can observe that, since the time integral goes from zero to +∞, we are
implicitly assuming that before time t = 0 the signal is identically zero, thus
starting only in the origin of the temporal axis. The advantage of the introduc-
tion of the Laplace transform is represented by its properties:

1. time differentiation1:

L
(
d

dt
f(t)

)
= sF (s)− f(0);

1Consider for example an exponentially decaying signal starting at time t = 0. In this kind
of signal, we obviously have a discontinuity at time t = 0. Therefore, what is the correct value
of the f(0) term we need to use in this formula? It depends on the meaning that we give to
the derivative. In the distribution sense, if u(t) is the step function:

d

dt
u(t)

∣∣∣∣
t=0

= δ(t)

and therefore we have that:
f(0) = f(0−) = 0.

275
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2. frequency differentiation:

(−1)
n · d

nF

dsn
= L (tn · f(t))

and applying it to the first derivative:

−dF
ds

= L (t · f(t)) ;

3. integration in the time domain:

L
(∫ t

0

f(τ) dτ

)
=
F (s)

s

and this makes clearer that the advantage connected to the usage of the
Laplace transform and the frequency domain is that, in this domain, the
differential operations (derivatives and integrals) become algebraic opera-
tions;

4. integration in the Laplace domain:

L
(
f(t)

t

)
=

∫ +∞

s

F (σ) dσ;

5. time-shift property2:

L (f(t− T )) = e−sTF (s)

and therefore any shift in the time domain adds an exponential term in
the frequency domain;

6. frequency-shift property:

L
(
eatf(t)

)
= F (s− a);

7. scaling:

L (f(at)) =
1

|a|
F
( s
a

)
and therefore a broadening in the time domain corresponds to a narrowing
in the frequency domain and vice versa; if a = −1 we obtain the time
reversal property:

L (f(−t)) = F (−s);

On the other hand, in the classical sense the distribution of the step function in the origin of
time does not exists and we can use as a value in the origin the one from the positive side:

f(0) = f(0+).

In general, we will consider the distribution sense.
2This is especially useful when we are dealing with signals that do not start at time t = 0.
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8. convolution:
L (f(t) ∗ g(t)) = F (s) ·G(s)

where the convolution is defined as:

f(t) ∗ g(t) =

∫ +∞

−∞
f(τ)g(t− τ) dτ

while the dual relationship of convolution in the frequency domain is in
general not used;

9. initial value theorem:

f(0+) = lim
s→+∞

sF (s);

10. final value theorem:
lim

t→+∞
f(t) = lim

s→0
sF (s).

5.1.2 A few elementary signals

We will make an extensive use of the following signals and of their Fourier
transforms, therefore it is worth to recall them:

• Dirac delta function:

δ(t) = 0 ∀t 6= 0,

∫ +∞

−∞
δ(t) dt = 1 ⇒ F (s) =

∫ +∞

0

δ(t)e−st dt = 1;

• step function:

u(t) =

{
1, t ≥ 0

0, t < 0
⇒ L(u(t)) = L

(∫ +∞

−∞
δ(t) dt

)
=

1

s
L(δ(t)) =

1

s
;

• ramp function:

f(t) =

{
0, t < 0

t, t ≥ 0
⇒ L (f(t)) =

1

s2
;

• rectangular function: it can be seen as the subtraction between two dif-
ferent step function, one centred in the origin and the other centred at T ,
therefore from the linearity of the Laplace transform:

f(t) =

{
1, 0 ≤ t ≤ T
0, elsewhere

⇒ L(f(t)) = L(u(t)− u(t− T )) =
1

s
− 1

s
e−sT =

1

s

(
1− e−sT

)
;

• decreasing exponential function: observing that the presence of an expo-
nential in the time domain is equivalent to a shift in the frequency domain:

f(t) = e−
t
τ u(t) ⇒ L (f(t)) =

1

s+ 1
τ

=
τ

1 + sτ
;
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• sine signal:

f(t) = sin(ωt)u(t) ⇒ L(f(t)) =
ω

s2 + ω2

that is a second order polynomial;

• cosine signal: observing that, apart from a constant term, it is the time
derivative of the sinusoidal signal:

f(t) = cos(ωt)u(t) ⇒ L(f(t)) = L
(

1

ω

d

dt
sin(ωt)

)
=

s

s2 + ω2
.

After this brief review, it is possible to make an example. We have previously
demonstrated that, using the properties of the Laplace transform:

L
(
d

dt
e−

t
τ u(t)

)
=

sτ

1 + sτ
.

A different possibility is to write explicitly the derivative in the time domain:

d

dt
e−

t
τ = −1

τ
e−

t
τ

and then try to calculate the Laplace transform of this signal. Doing this calcu-
lation, we will obtain a different result from what we expected. What is missing?
Where is the problem?
Needless to say, deriving in the time domain we have neglected the presence of
the step function, thus deriving a decreasing exponential over the whole time
domain, from −∞ to +∞. If we consider it, we need to add to the time deriva-
tive the time derivative of the step function, that is a Dirac delta function of
unitary amplitude. This is the reason why calculating the derivative in the time
domain we have obtained a Laplace transform that is different from the one we
have obtained using the properties of the Laplace transform. Transforming the
correct derivative, it is possible to observe that we obtain:

− 1

1 + sτ
+ 1 =

sτ

1 + sτ

that is exactly the expected result. The take home message, then, is to never
forget the presence of the step function, since we have assumed that every signal
starts at time t = 0.

5.1.3 Elementary components

Another important topic for the following part of the course is the behaviour of
a few elementary electronic components, that will be needed for understanding
more complex circuits. They are:

• resistor: its constitutive relationship, called Ohm’s law, in the time do-
main:

v(t) = R · i(t)

while in the frequency domain:

V (s) = R · I(s)
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Figure 5.1: A resistor.

thus giving the following complex impedance:

V (s)

I(s)
= R;

Figure 5.2: A capacitor.

• capacitor: in the time domain:

i(t) =
dq(t)

dt
=

d

dt
(Cv(t)) = C

dv(t)

dt

where C is called capacity and, in the frequency domain:

I(s) = sCV (s)

that gives the following complex impedance:

V (s)

I(s)
=

1

sC
= ZC

thus making the voltage and the current in the Laplace domain directly
proportional through a constant (the impedance) that depends on the
Laplace operator s;

Figure 5.3: An inductor.

• inductor: in the time domain:

v(t) = L · di(t)
dt

where L is called inductance and, in the frequency domain:

V (s) = sLI(s)
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thus allowing us to define the following complex impedance:

V (s)

I(s)
= sL = ZL

that again makes the constitutive relationship linear in the Laplace do-
main.

5.1.4 RC network

Figure 5.4: An RC network.

A first, important network that we can study is the RC network. It consists
in a resistor and a capacitor in series and, in the time domain, the circuit can
be studied starting from the constitutive relationship of the capacitor and from
the Kirchhoff’s law for voltages:{

vi = vo + iR

i = C dvo
dt

.

Substituting one in the other, we obtain:

RC
dvo
dt

+ vo = vi

and we know that the solution of this differential equation will be the solution
of the homogeneous equation plus a particular integral. To solve the associated
homogeneous equation, we need to find the zeros of the characteristic polyno-
mial:

RCz + 1 = 0 ⇒ z = − 1

RC
and since we know that the homogeneous equation will have an exponentially
decaying solution:

vo(t) = ke−zt = ke−
t
RC

while a particular integral will be the one for constant input and constant output:

v∗o = vi = const

thus giving the following overall solution:

vo(t) = ke−
t
RC + vi.

In the frequency domain, we can replace the capacitor with the associated com-
plex impedance, thus obtaining through a voltage partition:

Vo(s) =
ZC

ZC +R
Vi(s) =

1
sC

1
sC +R

Vi =
1

1 + sCR
Vi.
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Observing the denominator of the ratio between output and input, also called
transfer function:

Vo
Vi

=
1

1 + sCR

we can observe that it is exactly identical to the characteristic equation (this
time, the variable is represented by the Laplace operator s), therefore it will
give the eigenvalue of the problem:

s = − 1

RC
.

This will allow us to find the solution of the problem. In practical cases, then,
a few difficulties may arise when we need to go back from the Laplace domain
to the time domain, anti-transforming it.
As a first example, we can consider the following input signal:

vi(t) = A · δ(t).

In the Laplace domain, this gives:

Vi(s) = A

and therefore the output in the Laplace domain will be:

Vo(s) =
A

1 + sRC
=

A

1 + sτ
, τ = RC

and we have solved the problem in the Laplace domain. Most of the times, this
is enough, since we know to get back to the time domain by using the important
signals we have introduced in the previous section. In this case:

vo(t) =
A

τ
e−

t
τ .

Another example, we can suppose to have a step input:

vi(t) = u(t)

thus obtaining in the frequency domain:

Vi(s) =
A

s
.

This gives the following output, that can be decomposed as the sum of two
polynomials:

Vo(s) =
1

1 + sτ
· A
s

= A

(
1

s
− τ

1 + sτ

)
that, recognizing one fundamental signal and the translation property in the
frequency domain, gives:

vo(t) = A
(

1− e− t
τ

)
· u(t).

We can immediately observe, then, that the input signals given in the two pre-
vious examples are closely related. In fact, the last one is the integral of the
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previous one and, therefore, this property will be valid also at the output, where
the second signal is the integral of the first one. The same property holds consid-
ering the differentiation of a certain signal and it is one of the reasons for which
the Dirac delta function and the step function are among the most important
signals used to characterize the response of a certain system.
As an exercise, the willing student is asked to find the output signal of an RC
network in which the position of the resistor and of the capacitor are swapped
with respect to what is represented in Figure 5.4 when at the input of the
network is applied a Dirac delta signal and a step function signal.

5.1.5 Lag network

Figure 5.5: A lag network.

In Figure 5.5 it is possible to observe the so called lag network, consisting
in the series of two resistors and a capacitor in between them. Solving it in the
Laplace domain, due to the linearity property we can sum the resistances and
the complex impedance of the capacitor, since they are in series. Applying a
voltage partition, then, we obtain:

Vo
Vi

=
R2 + ZC

R1 +R2 + ZC
=

R2 + 1
sC

R1 +R2 + 1
sC

=
1 + sCR2

1 + sC(R1 +R2)

that means:

Vo =
1 + sCR2

1 + sC(R1 +R2)
Vi.

Given a step input:

vi(t) = u(t) ⇒ Vi =
A

s

we obtain the following output:

Vo =
1 + sCR2

1 + sC(R1 +R2)
· A
s

= A

(
1

s
− CR1

1 + sC(R1 +R2)

)
and defining the following time constant:

τ = C(R1 +R2)

in the time domain we obtain:

vo(t) = A

(
1− R1

R1 +R2
e−

t
τ

)
.
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It is therefore important to remember that when we have a linear network the
solution will be a sum of exponentials with time constants equal to the poles of
the transfer function, that are the solutions of the denominator of the transfer
function. Every reactive element (namely, capacitors) in general will add a pole
to the transfer function, each one with its own time constant. Moreover, the time
constant of a capacitor will be proportional to the product between its capacity
and the equivalent resistance seen from the capacitor. This can be found putting
the input and the output at zero (and switching off any source) and computing
the equivalent resistance seen from the pins of the capacitor.
In this particular case, since we have just one capacitor, we will have just one
exponential. A different possibility is then to write the solution by using the
initial and final value theorems:

vo(0
+) = lim

s→+∞
sVo(s) = lim

s→+∞ �
s · 1 + sCR2

1 + sC(R1 +R2)
· A
�s

= A · R2

R1 +R2

vo(+∞) = lim
s→0 �

s · 1 + sCR2

1 + sC(R1 +R2)
· A
�s

= A

and joining these two asymptotic values with an exponential behaviour with
time constant calculated as before.
There are, therefore, different ways of computing the same solution. A final
check, then, at least for simple networks, is to consider whether the behaviour
we have written is consistent from the physics of the circuit. As time tends to
infinity, in fact, we will reach a steady-state condition and therefore the voltage
across the capacitor will constant. This means that the capacitor will act as an
open circuit and the output will be equally identical to the input, giving a trans-
fer function equals to one. An infinitesimal amount of time after the application
of the input signal, on the other hand, by the continuity of physical variables
the voltage across the capacitor cannot be changed abruptly (this would have
required an infinite amount of current, thus clearly being unphysical), thus be-
ing equal to zero. This means that the capacitor, in this limiting condition, will
behave as a short-circuit, thus giving:

vo =
R2

R1 +R2
vi

from a voltage partition. This means that our analytical solution is consistent
with the physics of the problem.

5.1.6 Sinusoidal signals and Bode plots

Consider now a system with a certain transfer function T (s). If we apply a
certain input in the Laplace domain Vi(s), the system will produce an output
that can be written as:

Vo(s) = T (s) · Vi(s).

Assuming now that the input signal is a sinusoidal function of frequency ω:

vi(t) = A sin(ωt)

in general we can split the response of the system in a transient, exponential
behaviour and in a steady state response. In a linear system, the steady state
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component of the response will be oscillating at the same frequency but, in
general, with a different amplitude and with a different phase from the original
one. It is possible to relate the new amplitude and the new phase to the original
ones using the characteristics of the system, that are resumed in the transfer
function. The output signal, then, can be written as:

vo(t) = AB sin(ωt+ φ)

where:

B = |T (jω)| , φ = ∠ (T (jω)) .

Therefore, the transfer function will contain all the needed information. This
function can be represented in a peculiar way, using the so called Bode plots.
They are logarithmic graphs, in which on the horizontal axis we have the loga-
rithm3 in base ten of the frequency, while in the amplitude plots on the vertical
axis we will have the magnitude of the transfer function expressed in decibels:

|T (jω)|dB = 20 · log (|T (jω)|)

and in the phase plots the scale will be linear with the phase of the transfer
function.
An immediate example is the representation of the transfer function of the RC
network represented in Figure 5.4. In the Laplace domain, it can be written as:

T (s) =
1

1 + sτ

and if we consider explicitly the meaning of the Laplace operator:

s = jω ⇒ T (jω) =
1

1 + jωτ
.

In this case, we can then write the magnitude in decibels as:

|T (jω)| = 1√
1 + (ωτ)2

|T |dB = 20 log

(
1√

1 + (ωτ)2

)
= −20 log

(√
1 + (ωτ)2

)
.

A simple way of plotting this relationship is to study the asymptotic behaviour
of the Bode plots. This means that, for this relationship, we can consider two
limiting cases: one for ωτ � 1 and the other for ωτ � 1. Analysing the first
one:

ωτ � 1 : ω � 1

τ
→ f � 1

2πτ
, |T |dB = 0

while for the second one:

ωτ � 1 : ω � 1

τ
→ f � 1

2πτ

|T |dB = −20 log(ωτ) = −20 log(2πfτ) = −20 log(f) + 20 log

(
1

2πτ

)
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Figure 5.6: Bode plot of the amplitude of the transfer function of an RC circuit
(in red), asymptotic behaviour of the same function (in yellow) and Bode plot
of a single-zero function (in light blue).

but since log(f) is the variable on the horizontal axis, the right end of the graph
will be represented as a straight line with a slope of −20 dB/dec.

In Figure 5.6, it is possible to observe how we have extended the asymptotic
behaviour of the transfer function, thus obtaining a function whose first deriva-
tive is discontinuous. Moreover, note that the discontinuity of this single-pole
function is placed exactly in the frequency of the pole:

s = −1

τ
.

The maximum error between the exact transfer function and the asymptotic one
will thus be obtained in that point and it will be equal to 3 dB. After the pole,
the function continuous as a straight line with a slope of −20 dB. If instead of
the pole we had a zero at that frequency, we would have obtained a straight line
increasing with a slope of +20 dB/dec after that point (while being identically
zero before it).
This kind of representation of the transfer functions explains how a sinusoidal
signal is affected by the system depending on the frequency of the input signal.
If we have, for example, the following transfer function:

T (s) =
1

sτ

we can observe that it is clearly a single-pole transfer function and that its pole
is placed in the origin, for frequency f = 0. This means that we are able to
represent the transfer function as a straight line always decreasing with a slope
of −20 dB/dec.
In the same way, we can calculate the phase of the previous functions. For the
transfer function of the RC network:

∠

(
1

1 + sτ

)
= ∠

(
1

1 + jωτ

)
= −∠(1 + jωτ) = − arctan(ωτ)

and it can be represented as in Figure 5.7.
A zeroth order approximation of the phase function, in this case, is to assume

to have a −90◦ shift every time we reach a pole and a +90◦ phase shift every
time we cross a zero. This approximation, however, is quite brutal and it can
lead to quite significant errors. In a more accurate, first order approximation, we

3In general, when omitted the base, as in log we will assume base ten.
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Figure 5.7: Bode plot of the phase of the transfer function of an RC circuit (in
red), asymptotic behaviour at the first order of the same function (in yellow)
and Bode plot of a single-zero function (in light blue).

can assume this transition to be a little more smooth, with a transient behaviour
represented with a straight line with slope −45◦/dec (in the case of a zero, it
will change the sign) extending from one decade before the pole (or the zero)
to one decade after the pole (or the zero). In the case of a single-zero transfer
function:

T (s) = 1 + sτ → ∠ (T (jω)) = arctan(ωτ).

In general, the transfer function has a certain number of poles and zeros and it
can be written as:

T (s) = G · (1 + sτz1) · (1 + sτz2) · . . . · (1 + sτzn)

(1 + sτp1) · (1 + sτp2) · . . . · (1 + sτpn)

and in decibels it can be written as:

|T |dB = |G|dB +

n∑
i=1

|1 + jωτzi|dB −
n∑
k=1

|1 + jωτpk|dB

∠(T ) =

n∑
i=1

∠(1 + jωτzi)−
n∑
k=1

∠(1 + jωτpk).

Figure 5.8: Bode plot of the amplitude of the transfer function of the lag network.

Another example is represented by the transfer function of the lag network,
that is represented in Figure 5.5. It can be written as:

T (s) =
Vo
Vi

=
1 + sCR2

1 + sC(R1 +R2)
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and therefore we can identify a zero:

s = − 1

CR2
⇒ fz =

1

2πCR2

and a pole that will be at lower frequency with respect to the zero:

s = − 1

C(R1 +R2)
⇒ fp =

1

1πC(R1 +R2)
< fz.

The behaviour of the single-pole transfer function and of the single-zero transfer
function are represented by the dotted lines in Figure 5.8. By summing them,
it is possible to obtain the behaviour of the overall transfer function, that is
represented by the yellow line.

Figure 5.9: Bode plot of the amplitude and of the phase of the transfer function
of the lag network.

In general, to represent the Bode diagram of a certain transfer function
we identify all the zeros and poles of the function and, then, starting from an
horizontal line (if there is not any pole or zero in the origin), we increment
of 20 dB/dec the slope of the line when we cross a zero and we diminish it
of −20 dB/dec after crossing every pole. The same can be done for the phase
adding or subtracting 90◦. It is important to note that, especially with respect
to the phase diagram, the asymptotic Bode plots will be a good enough approx-
imation of the real behaviour of the transfer function if and only if the zeros and
the poles of the function will be well apart one from the other. Also in this simple
case, we can investigate whether the Bode plot is consistent with the physical
behaviour of the circuit in the limiting conditions, thus verifying the initial and
final value of the Bode plot. In fact, in the low frequency approximation, since
the capacitor tends to be an open circuit:

f → 0 ⇒ ZC →∞ ⇒ Vo = Vi ⇒ |T |dB = 0

while in the high frequency approximation, since the capacitor tends to be a
short-circuit:

f →∞ ⇒ ZC → 0 ⇒ Vo =
R2

R1 +R2
Vi ⇒ |T |dB =

R2

R1 +R2

∣∣∣∣
dB

.

The study of the limiting cases can thus be useful for checking errors in the
Bode plots.
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As an exercise, then, the student can represent a network that gives a transfer
function in which we have one pole and one zero whose frequencies are related
as:

fz < fp.

This kind of network is called lead network.
Final, we can investigate the so called band-pass filter, whose transfer function
is:

T (s) = A
sτ0

(1 + sτ1)(1 + sτ2)

where τ1 � τ2. This means that:

f1 =
1

2πτ1
� f2 =

1

2πτ2

and that we have one zero in the origin. Therefore, we will obtain the Bode
diagram represented in Figure 5.10. The student is then ask quote the Bode
diagram represented in Figure 5.10 and to calculate the step response of this
band-pass filter.

Figure 5.10: Bode plot of the amplitude and of the phase of the transfer function
of a pass-band filter.

5.2 Integrator and differentiator circuits

5.2.1 The integrator

In Figure 5.11 it is represented the circuit of an ideal integrator. Since in such
circuit the operation amplifier is an ideal operation amplifier, we will not have
any current flowing through the negative input pin and, since it is a negative
feedback system, we will have:

V − = V + = 0 V.

Therefore, we can write the current flowing through the resistance R and the
capacitor C as:

I =
Vi
R
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Figure 5.11: An ideal integrator.

and thus the voltage drop across the capacitor, in the Laplace domain:

VC = ZCI =
1

sC
I.

From Kirchhoff’s voltage law, then, we can write the output voltage:

VC + Vo = 0 ⇒ Vo = −VC = − I

sC
= − Vi

sCR

thus obtaining the following transfer function:

T (s) =
Vo
Vi

= − 1

sCR

where we recognize that 1/s is the Laplace integral operator.

Figure 5.12: Bode plots of the transfer function of an ideal integrator.

In Figure 5.12 are represented the Bode plots of the magnitude and of the
phase of the previous transfer function. For the magnitude, since:

T (jω) = − 1

jωCR
=

j

ωCR

we obtain:

|T | = 1

ωCR
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and we can calculate the frequency at which the magnitude crosses the zero
decibels axis as:

|T (jω0)| = 1 ⇒ ω0 =
1

CR
⇒ f0 =

1

2πCR
.

For the phase, on the other hand, we can observe that we are dealing with a
purely imaginary quantity, therefore the phase will be 90◦ at every frequency.
In practice, however, the configuration represented in Figure 5.11 is never adopt-
ed, while it more common to find the configuration represented in Figure 5.13.
The first configuration, in fact, may give rise to some problems when we are
dealing with a non-ideal operation amplifier. For example, we can consider the
presence of an offset voltage, that leads to having a voltage Vos at the positive
input pin of the operation amplifier. Since we are always dealing with a negative
feedback system, we can write:

V − = V + = Vos

and therefore in this case the current flowing through the resistance R and the
capacity C will be:

I =
Vos
R

even without having any input. This current, in particular, will come from the
ideal voltage source that is inside the operation amplifier and will pass through
the feedback capacitance C, thus giving the following output voltage:

Vos + VC = Vo ⇒ Vo = Vos + ZCI = Vos +
Vos
sCR

.

Assuming the offset voltage to be constant, we can transform it in the time
domain:

vo(t) = vos(t) +
1

CR

∫ t

0

vos(t) dt

and observe that it will give rise to the following behaviour:

vo = vos +
vos
CR
· t.

Assuming the constant offset voltage to be positive4, we obtain that the output
will continuously increase with time until it reaches an upper limit vcc repre-
sented by the maximum value of the output swing.
The willing student, then can demonstrate that the same problem arises when
we have a bias current iB through the pins of the operation amplifier or when
there is even a small offset current.

The only, really working configuration is therefore the one represented in
Figure 5.13. Adding a resistance RC in parallel to the capacitor C, we can write
a complex impedance from this parallel:

Z = RC‖
1

sC
=

RC
1 + sCRC

4Nothing changes having a negative offset voltage, only the output will be decreasing with
time instead of increasing.
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Figure 5.13: A practical configuration for an integrator.

thus obtaining the following transfer function that closely resembles the one of
an inverting amplifier:

T (s) =
Vo
Vi

= −Z
R

= −RC
R
· 1

1 + sCRC
.

Figure 5.14: Bode plot of the transfer function of the practical configuration for
an integrator.

The Bode plot of the magnitude5 and of the phase of this transfer function
is represented in Figure 5.14. From the plot of the magnitude, it is possible to
observe that this system is not a perfect integrator: it behaves like an integrator
only at high enough frequencies, after the pole in:

fp =
1

2πCRC
.

Moreover, we can calculate the zero frequency gain (by substituting s = 0 in
the expression for the transfer function) obtaining the value represented on the

5The willing student is asked to calculate the value of the frequency at which the magnitude
crosses the zero decibel axis.
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graph of RC/R. The phase, on the other hand, will start at 180◦ since at low
frequency we have a positive and constant quantity and it will pass to 90◦ after
that pole.
Adding to this circuit the effect of an offset, we can demonstrate that without
any input the output will be:

Vo = −RC
R
Vos for s = 0

considering a DC offset voltage. In this case in fact, since we are considering
a continuous signal, the capacitor will act as an open circuit and therefore the
overall behaviour will be identical to the one of an inverting amplifier. Consid-
ering the circuit in Figure 5.11, on the other hand, the fact that the capacitor
could be replaced by an open circuit made the network equivalent to an oper-
ation amplifier used in an open-loop configuration, thus leading to an infinite
output. However, in this second case the circuit at low frequency does not act
as an integrator and we can study its temporal behaviour as a step response.
Given therefore a step of amplitude A as an input:

vi(t) = Au(t) ⇒ Vi =
A

s

we can write the output of the circuit as:

Vo = −RC
R

A

1 + sCRC
· 1

s
= −ARC

R

(
1

s
− CRC

1 + sCRC

)
and recognizing that the first term is a step of unitary amplitude while the
second is an exponential, we can return to the temporal domain and write:

vo(t) = −ARC
R

(
1− e− t

τ

)
u(t), τ = RCC.

This behaviour is represented in Figure 5.15.
In this temporal step response, we can recognize two different behaviours,

one after a time much shorter than the time constant τ , the other after a time
much longer than that time constant:

vo(t) '

{
−ARCR , t� τ

−ARCR
[
1−

(
1− t

τ

)]
= −ARCR · tτ = − A

RC t, t� τ
.

It is important to note that at high enough frequencies, when the circuit is
acting as an integrator:

T (s) = − 1

sCR
→ vo(t) = − A

RC
t

consistently with the behaviour for t � τ . This is because short time means
high frequencies (from the Fourier theory); the same consideration can be done
regarding the long-time behaviour and the low-frequencies region of the Bode
plot.

Back to the ideal integrator, we can now study the network assuming to have
a finite gain of the operation amplifier. We have previously calculated the ideal
gain of this network:

Gid = − 1

sCR
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Figure 5.15: Temporal step response of a real integrator and corresponding be-
haviour on the Bode diagram of the magnitude.

Figure 5.16: Open-loop gain calculation for an ideal integrator.

and we can now compute the open-loop gain. Considering the network repre-
sented in Figure 5.16, we can write the output as:

Vo = A(V + − V −) = −AV − = −A(s)
1

1 + sCR
Vi

thus obtaining the following open-loop gain:

Gol =
Vo
Vi

= − A0

1 + sτ
· 1

1 + sCR

thus obtaining a function with two poles. The magnitude of this transfer function
can be represented as in Figure 5.17 where, in general, the low frequency pole
comes from the fact that we are dealing with a non-ideal operation amplifier.

On the same Figure, we can then represent also the ideal gain Gid and then
study the loop gain Gloop, that can be approximated as equal to the lower
function between the open-loop gain and the ideal gain. This means that, when
we are considering a real operation amplifier, the ideal integrator will actually
act as an integrator only on a finite bandwidth between a low frequency fL
and an high frequency fH . To find the low frequency, we can observe that it
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Figure 5.17: Bode plot of the magnitude for the open-loop gain.

corresponds to the point where the ideal gain is identical to the zero-frequency
gain of the operation amplifier:

Gid = A0 ⇒
1

ωCR
= A0 ⇒ fL =

1

2πCRA0
.

Once we have found it, we can calculate the gain G2 in Figure 5.17. To do
this, we need to remember that if we have that a certain transfer function, on a
certain interval is decreasing with a slope of −n · 20 dB/dec, then the product:

G · fn = const

will be constant6. This allows us to write the following system of equations:{
A0fL = G2fH → A0fL = 1

2πCR

G1

(
1

2πCR

)2
= G2 (fH)

2
= A0fLfH = 1

2πCRfH

thus obtaining:

fH =
G1

2πCR
.

However, we have also that:

A0
1

2πτ
= G1

1

2πCR
→ G1 = A0

CR

τ

thus obtaining:

fH = A0
CR

τ
· 1

2πCR
=

A0

2πτ
= GBWP

and:

G2 = A0
fL
fH

=
1

2πCR
· 1

fH
=

1

2πCR
· 2πτ

A0
=

τ

CRA0
.

Alternatively, we could have started from the expression of the open-loop gain:

Gol =
A0

1 + sτ
· 1

1 + sCR

6Obviously, if the function is increasing with a slope of m · 20 dB/dec, the correct relation-
ship will be:

G

fm
= const.
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and since we have that the high frequency fH is well beyond both poles:

Gol '
A0

sτsCR
=

A0

s2τCR
→ A0

4π2f2
HτCR

while for the ideal gain:

Gid =
1

sCR
→ 1

2πfHCR

and we obtain, since the two quantities are equal:

A0

4π2f2
HτCR

=
1

2πfHCR
⇒ fH =

A0

2πτ
.

Both the previous methods are valid. A third possibility comes from the follow-
ing observation:

Gol|dB − Gid|dB = Gloop|dB

and it can be calculated from a network similar to the one we had in Figure
5.16 but where the resistance is grounded and the test signal is imposed where
we have cut the loop, between the capacitor and the output. From it, we can
write:

V − = VT
R

R+ 1
sC

= VT
sCR

1 + sCR

thus obtaining the following loop gain:

Gloop = −A(s)
sCR

1 + sCR
.

In the high-frequency regime, therefore, the capacitor is a short-circuit and this
means that the loop gain tends to be equal to A(s), that crosses the zero decibel
axis in the gain-bandwidth product GBWP .

5.2.2 The differentiator

Figure 5.18: The differentiator.

The network of a differentiator is represented in Figure 5.18. From a direct
inspection of this circuit, assuming an ideal operation amplifier, we can write
its transfer function as:

T (s) = −sCR

thus obtaining the Bode diagrams for the magnitude and the phase represented
in Figure 5.18. Investigating the Bode plot of the magnitude, we can determine
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Figure 5.19: Bode diagrams for the magnitude and the phase of a differentiator.

the frequency of the point where the transfer function crosses the zero decibel
axis:

|T | = 1 ⇒ 2πf0CR = 1 ⇒ f0 =
1

2πCR
.

On the other hand, for the phase, we can observe that at every frequency we
have a negative and purely imaginary quantity at every frequency:

∠T = −90◦.

In general, however, this ideal circuit cannot be used. In fact, we can observe
that in the high-frequency regime its gain must tend to infinite and this is
obviously an unphysical characteristic.

Figure 5.20: A real differentiator.

A real differentiator can be realized adopting the network represented in
Figure 5.20. In this case, we can see that the capacity C and the additional
resistance RC are in series and therefore we can define the following complex
impedance:

Z = RC +
1

sC
=
sCR+ 1

sC

thus obtaining the following transfer function:

T (s) = −R
Z

=
sCR

1 + sCRC
.



5.2. INTEGRATOR AND DIFFERENTIATOR CIRCUITS 297

Figure 5.21: Bode diagrams of the magnitude and phase of a real differentiator.

Usually, we have that the compensation resistance is much lower than the other
one:

RC � R

due to the fact that it is, as we have said, just a compensation element. The
Bode diagrams of the magnitude and the phase of this transfer function are
represented in Figure 5.21. It is possible to observe that, in the high-frequency
limit:

lim
s→∞

|T (s)| = R

RC

consistently with the fact that the capacity behaves as a short-circuit at infinite
frequency.

Figure 5.22: Temporal step response of a real differentiator.
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Assuming a step input signal:

vi(t) = Au(t) → Vi =
A

s

we can obtain the following output in the Laplace domain:

Vo(s) =
sCR

1 + sCRC

A

s
= −AR

RC
· CRC

1 + sCRC

where we can recognize the Laplace transform of an exponential:

vo(t) = −AR
RC

e
− t
CRC .

From the representation of this temporal response in Figure 5.22, we can observe
that the circuit will behave as a differentiator only for long times t � τ and,
therefore, in the low-frequency region, while for short times t� τ and therefore
in the high-frequency limit it will be a negative step.
We can now study the various gain terms considering a real operation amplifier
with a single-pole transfer function A(s). Considering for example:

C = 100 nF, R = 16 kΩ, RC = 470 Ω

GBWP = 70 MHz, A0 = 106

we can obtain that the ideal gain is:

Gid = − sCR

1 + sCRC
.

Figure 5.23: Calculation of the open-loop gain for a differentiator.

Considering the network represented in Figure 5.23, we can calculate now
the open-loop gain. The voltage at the inverting pin of the operation amplifier
will be:

V − = VT
R

R+ Z
= VT

R

R+RC + 1
sC

= VT
sCR

1 + sC(R+RC)

thus giving a pole with time constant C(R + RC), as we could have expected
studying the circuit, observing the presence of the capacity C and calculating
its equivalent resistance R+RC . Then, the output voltage will be:

Vo =A V
−
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and therefore the open-loop gain:

Gol = −A(s)
sCR

1 + sC(R+RC)
= − A0

1 + sτ
· sCR

1 + sC(R+RC)
.

We can then calculate the frequency of the pole in the ideal gain:

fp,id =
1

2πCRC
= 3.54 kHZ

the frequency of the first pole in the open-loop gain:

fp1 =
1

2πτ
=
GBWP

A0
= 7 Hz

and the frequency of the second pole in the open-loop gain:

fp2 =
1

2πC(R+RC)
= 97 Hz.

We can then calculate the following gain value:

G2 =
R

RC
= 35.5 = 31 dB.

Figure 5.24: Bode plots of the gains for the differentiator.

In the low frequency limit, then, we have that:

Gol ∝ −A0sCR

therefore the frequency at which it will cross the zero decibel axis will be:

|Gol| = 1 ⇒ f0 =
1

2πA0CR

and this allows us to find the remaining value of gain:

1

f0
=

G1
1

2πτ
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that gives:

G1 =
1

2πτf0
=

2πA0CR

2πτ
=
A0CR

τ
= 7 · 105 ' 117 dB.

At high-frequencies, the circuit is not an ideal circuit and we can calculate the
frequency where:

|Gloop| = 0 dB

that will be:

G1
1

2πC(R+RC)
= G2fH ⇒ fH = 97

G1

G2
= 1.9 MHz.

An alternative method for finding it consists in considering the expression of
the open-loop gain well beyond the second pole:

Gol =
A0

1 + sτ

sCR

1 + sC(R+RC)
∝ A0sCR

sτsC(R+RC)
=

A0R

sτ(R+RC)

and at frequency fH it must be equal to R/RH :

Gol(fH) =
A0R

2πfHτ(R+RC)
=

R

RC

thus obtaining:

fH =
A0RC

2πτ(R+RC)
= GBWP

RC
R+RC

and it is consistent with what we have written before. An alternative, third
methods consists in considering that at very high frequency the capacitor can
be assumed to be similar to a short-circuit, thus giving a network similar to the
one of an inverting amplifier, where:

Gol '
GBWP

1 + R
RC

.

Considering the representation of the open-loop and ideal gain in Figure 5.24,
then, we can again observe that the loop gain will be equal to the difference
between the open-loop gain and the ideal gain, both expressed in decibels. To
compute the loop gain, then, we can assume a network similar to the one rep-
resented in Figure 5.23 but where the input is grounded and to the breaking
point, between the feedback resistance and the output, has been applied the
test signal. We can then write the voltage at the inverting pin of the operation
amplifier as:

V − = VT
RC · 1

sC

RC +R+ 1
sC

= VT
1 + sCRC

1 + sC(R+RC)

and the loop gain therefore is:

Gloop(s) = −A(s)
1 + sCRC

1 + sC(R+RC)
= − A0

1 + sτ

1 + sCRC
1 + sC(R+RC)

.
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This transfer function will have a pole in:

fp =
1

2πC(R+RC)

and a zero in:

fz =
1

2πCRC

and we can represent it in a Bode plot7. Again we can find the gain G1:

A0
1

2πτ
= G1fp → G1 =

A0

fp

1

2πτ
= A0

2πC(R+RC)

2πτ

the gain G2:

G1f
2
p = G2f

2
z → G2 = G1

f2
p

f2
z

= A0
C(R+RC)

τ
· (2πCRC)2

(2πC(R+RC))2
=

=
CR2

C

τ(R+RC)

and the high-frequency limit fH at which the loop gain is unitary:

G2fz = fH → fH =
A0C(R+RC)

τ

1

2πCRC
=
A0(R+RC)

2πτRC
.

5.2.3 The phase shifter

Figure 5.25: The phase shifter.

We can now consider another circuit, the phase shifter, represented in Figure
5.25. We can assume the following values:

R = 2 kΩ, C = 10 nF, A0 = 106, GBWP = 10 MHz.

To compute the ideal gain, we can use the superposition principle, splitting
the input Vi as two inputs, one connected to the positive pin and the other
connected to the negative pin of the operation amplifier. Grounding the input
of the positive pin, the output will be:

Vo = Vi → G = −1

7The willing student is invited to draw it.
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while switching off the other input and recognizing the network of a non-
inverting amplifier8:

G = 1 +
R

R
= 2.

Superimposing these two outputs with respect to a common input, we obtain:

Vo = −Vi + 2V + = −Vi + 2
1

1 + sCR
Vi =

1− sCR
1 + sCR

Vi

thus observing that we have obtained the transfer function of an all-pass filter:

T (s) =
1− sCR
1 + sCR

.

Figure 5.26: Bode diagrams of the magnitude and phase of a phase shifter.

The ideal gain of this network, therefore, will be an horizontal line at 0 dB,
while the phase can be calculated as:

∠
1− jωCR
1 + jωCR

= ∠(1− jωCR)− ∠(1 + jωCR) =

= − arctan(ωCR)− arctan(ωCR) =

= −2 arctan(ωCR) =

{
0, ω � ωC

−180◦, ω � ωC
.

This is the reason why this circuit is called phase shifter.
In the time domain, assuming a step input:

vi(t) = Au(t) → Vi(s) =
A

s

we can write the step response in the Laplace domain as:

Vo(s) =
1− sCR
1 + sCR

A

s
= A

(
1

s
− 2CR

1 + sCR

)
thus obtaining:

vo(t) = A
(

1− 2e−
t
τ

)
· u(t)

8It is extremely important to be able to isolate pieces of known networks, recognizing their
topology, in order to not need to solve them from scratch.
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where the time constant is:

τ =
1

CR
.

Figure 5.27: Step response of a phase shifter.

We can immediately observe that at high frequency, therefore for short times,
the gain is one and the phase is−π, thus determining a change of sign in response
to the step input. On the other hand, at low frequencies, therefore for long times,
the gain is again one but the phase is zero and the output signal is identical to
the input one.
As an alternative, we could have used the initial value theorem:

vo(0
+) = lim

s→∞
sVo(s) = lim

s→∞
s

1− sCR
1 + sCR

A

s
= −A

and the final value theorem:

lim
t→+∞

vo(t) = lim
s→0

sVo(s) = lim
s→0

s
1− sCR
1 + sCR

A

s
= A

for computing these quantities.
Another alternative was to compute them from a physical interpretation of
the circuit, noting that at low frequencies (and therefore for long times) the
capacitor is an open circuit while at high frequencies (and therefore for short
times) the capacitor is a short-circuit.

Figure 5.28: Calculation of the open-loop gain for a phase shifter.

Considering the network in Figure 5.28, we can try to calculate the open-loop
gain. The output will be:

Vo = A(s)(V + − V −)
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where we have:

V − =
VT
2
, V + =

1

1 + sCR
VT .

Therefore, the open-loop gain is:

Gol(s) = A(s)

(
1

1 + sCR
− 1

2

)
= A(s)

(
1− sCR
1 + sCR

)
1

2
=

=
A0

1 + sτ

(
1− sCR
1 + sCR

)
1

2

and it can be represented as in Figure 5.29.

Figure 5.29: Bode diagrams of the magnitude and the phase of gains for the
phase shifter.

We can calculate the frequency of the poles and zeros:

1

2πτ
=
GBWP

A0
= 10 Hz,

1

2πCR
' 8 kHZ

the initial gain:
A0

2
= 5 · 105 = 114 dB

and the frequency at which the magnitude of the open-loop gain is zero decibel:

fH =
A0

2

1

2πτ
=
GBWP

2
= 5 MHz.

To calculate then the loop gain, we can assume to have again the network in
Figure 5.28 but with grounded input and a test signal applied at the breaking
point, before the feedback resistance. In the high frequency limit, this will give:

V − =
VT
2
, V + = 0

and therefore the output:

Vo = −A(s)
1

2
VT

thus giving the following loop gain:

Gloop(s) = −A(s)

2
= −1

2

A0

1 + sτ
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where, to find the frequency at which it crosses the zero decibel axis, its high-
frequency behaviour can be approximated as:

A0

2(1 + sτ)
' A0

2sτ
= 1

consistently with what we have found before.
From an analogous point of view we can study the phase of the gain G, obtaining
the behaviour represented in Figure 5.29.

5.3 Input and output impedances and gain cal-
culations

5.3.1 Choice of the test source

Figure 5.30: Circuit considered with an applied current source.

Consider now the circuit represented in Figure 5.30; compute the input
impedance of this circuit. We can suppose, as in Figure, to apply a current
source to the inverting pin and to try to calculate the input impedance as:

Zi =
VS
IS
.

Applying a certain current IS , we get that:

VS = V −

and, in the ideal case, it will give:

V + = V − = 0 ⇒ VS = 0 ⇒ Zid = 0.

This means that the input impedance can be written as:

Z =
Zol

1−Gloop

and the feedback will tend to decrease the value of the open-loop impedance.
The open-loop impedance can be calculated by imposing:

Gloop = 0
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but since the loop gain is proportional to the gain A of the operation amplifier,
we can impose:

A = 0 ⇒ Vo = 0.

Figure 5.31: Calculation of the open-loop impedance (on the left) and of the
loop gain (on the right).

In this condition, the open-loop impedance is equal to:

Zol = Ri‖R =
RiR

Ri +R
.

Last, we can compute the loop gain when the amplifier has a certain gain A(s)
and we have set IS = 0, thus having an open circuit connected to the inverting
pin of the operation amplifier:

Gloop = −A(s) · Ri
Ri +R

.

Putting all these considerations together, we obtain the following input impe-
dance:

Zi =
Zol

1−Gloop
=

RiR

Ri +R
· 1

1 +A(s) Ri
Ri+R

=

=
RiR

Ri(1 +A(s)) +R
=

RRi
R+Ri +RiA(s)

.

Alternatively, we could have considered the whole circuit and solve it, noting
that the resistance Ri is in parallel with the rest of the circuit:

Z = Ri‖Z ′

where Z ′ is the input impedance of the second stage and, connecting a suitable
source, we can calculate:

Z ′ =
Z ′ol

1−G′loop
obtaining that:

Z ′ol = R, G′loop = −A(s) ⇒ Z ′ =
R

1 +A(s)
.

Substituting back, then, we can write the value of the impedance Z:

Z =
RiZ

′

Ri + Z ′
=

RiR
1+A

Ri + R
1+A

=
RiR

R+Ri(1 +A)
=

RRi
R+Ri +RiA
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Figure 5.32: Circuit considered with an applied voltage source.

analogously to what we had in the previous case.
A third way of studying this circuit is to neglect all the feedback theory that

we have studied, apply a voltage source as in Figure 5.32 and solve it. From an
analysis of the circuit, we can observe that:

V − = VS , V
+ = 0 ⇒ Vo = −AVS

and this gives the following current:

IS = I1 + I2 =
VS
Ri

+
VS(1 +A)

R

where I1 is the current passing through the input resistance Ri and I2 is the
current flowing through the feedback resistance R. From this, we get:

Z =
VS
IS

=
1

1
Ri

+ 1+A
R

=
RiR

R+Ri +RiA

and this is consistent with what we had before. In general, the application of
the feedback theory takes more time but it makes the solution of the circuits
easier.
Assume now to be using the first method, based on feedback theory, but we want
to apply it to the circuit in Figure 5.32, where we have a voltage source. In this
case, we need to calculate the ideal impedance but, doing this, we immediately
have to face a problem. In fact, in the following limit:

A → ∞

this means that both pins are set at the same voltage:

V − = V +

but since we have a voltage source:

V − = VS , V + = 0

this condition seems to not be respected. The only way of satisfying these con-
ditions is to have:

Vo → −∞
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but this is an awkward situation. Moreover, this leads the current I to be infinite
(at least from an ideal point of view), therefore:

IS → ∞

and this gives the following ideal impedance:

Zid =
VS
IS

= 0

that is consistent with what we had in the previous case. Therefore, we are still
recovering the right behaviour even if we are dealing with a clearly unphysical
situation. Since the input impedance can be written as:

Z =
Zol

1−Gloop

we need now to calculate these two quantities.

Figure 5.33: Calculation of the open-loop impedance (on the left) and of the
loop gain (on the right) in the case of a test voltage source.

The open loop impedance, from Figure 5.33, can be immediately recognized
to be equal to:

Zol = Ri‖R

and calculating the loop gain we obtain that:

V + = V − = 0 ⇒ Gloop = 0.

However, this means that there is not any feedback and the circuit is working
in open loop conditions, thus giving the following input impedance:

Z = Zol.

Applying the feedback theory, therefore, we must pay attention to not be break-
ing the loop and therefore of choosing the best test source. A wrong choice, in
fact, can lead to break the loop, thus forcing a different behaviour of the circuit.
In this case, if we do not choose a current source, we obtain some quantities
that tend to infinity in the computation of the ideal impedance, thus leading to:

Gloop = 0.

Therefore, when we have a current flowing through the impedance that is equal
to zero we need to use a voltage source, while if the voltage of the input pin is
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set to zero we will have to use a current source. In the majority of the cases,
the inverting pin of the operation amplifier will have a zero ideal impedance
and, therefore, if it is the input pin of the operation amplifier the best choice is
probably represented by a current source. The same, then, will happen when we
will consider the output pin of the operation amplifier, when trying to calculate
the associated impedance. For the positive pin, generally, its impedance tends
to infinite and therefore we must drive it with a voltage source.
Alternatively, we could have used Blackman’s formula:

Z = Zol
1−Gloop|sc
1−Gloop|oc

where the loop gain is computed twice, one when the input is short-circuited
to the ground and the other when it is left floating. It is important to note
that if there is not anything connected in series or in parallel to the considered
impedance of the circuit, then one of the two loop gains will be equal to zero.

5.3.2 Differential stage

Figure 5.34: Differential stage considered.

Consider the differential stage represented in Figure 5.34, with the following
values:

R1 = 2 MΩ, Ro = 75 Ω, A0 = 126 dB

and find the values of the resistors R1, R2, R3 and R4 such that the ideal gain
is:

Gid = 10

and then calculate the input impedance Z1 and Z2 respectively seen from V1

and V2.
Since we are dealing with the ideal gain, we can apply the superposition principle
and, switching off the input at the positive pin:

V2 = 0 ⇒ Vo1 = −R2

R1
V1

while switching off the input at the inverting pin:

V1 = 0 ⇒ Vo2 =
R4

R3 +R4
· R1 +R2

R1
V2.
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Superimposing these two effects, we obtain that:

Vo =
R2

R1

(
−V1 + V2 ·

1 +R1‖R2

1 +R3‖R4

)
from which we can obtain the usual condition for having a subtractor:

R1

R2
=
R3

R4

and the ideal gain sets this ratio to:

G = 10 =
R2

R1
.

Ideally, these resistances will be between 1 kΩ and 100 kΩ, since lower resis-
tances will give too high currents while higher resistances will produce more
noise, therefore we can choose, for example:

R1 = R3 = 10 kΩ, R2 = R4 = 100 kΩ.

Figure 5.35: Computation of the first input impedance.

We can now compute the input impedance starting from the one correspond-
ing to the input V1. Considering the circuit in Figure 5.35, we can observe that
the input impedance will be given by the following series:

Z1 = R1 + Z ′1

since R1 is in series with respect to the rest of the circuit. Since now the test
source must be connected to the inverting input pin, we can expect to have a
low impedance at this node and therefore we can drive it using a current source
IS . Studying the network:

V + = 0, V + = V − ⇒ VS = 0 ⇒ Z ′id,1 = 0

and this gives:

Z ′1 =
Z ′ol,1

1−G′loop,1
.
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To calculate the open-loop impedance, we need to shut off the voltage controlled
voltage source that is indicated with the blue arrow in Figure, obtaining:

A = 0 ⇒ Zol,1 = (Ri +R3‖R3)‖(R2 +Ro) = 95.2 kΩ.

The calculation of the loop gain gives:

G′loop,1 =
Ri

R1 +R2 +Ro +R3‖R4
· −A(s) = −0.95A(s).

In the low frequency limit, the loop gain is:

G′loop,1 ' −2 · 106 · 0.95

and therefore the input impedance is:

Z ′1 =
95.2 kΩ

1 + 2 · 106 · 0.95
' 50 mΩ.

This value is very low, even lower than the impedance of the ground, therefore
the following approximation holds:

Z1 = R1 + Z ′1 ' R1 = 10 kΩ.

Figure 5.36: Computation of the loop gain and impedance reconstruction in this
case.

To compute the second input impedance, we can note that the resistance R3

is in series and R4 in parallel to the impedance of the rest of the network, thus
giving:

Z2 = R3 +R4‖Z ′2.

Driving the network with a voltage source, in the ideal case:

V + = V − ⇒ IS = 0 ⇒ Z ′id =∞

and we can observe that choosing a current source to drive this node we would
have obtained a clearly wrong result. Therefore:

Z ′2 = Z ′ol,2(1−Gloop,2)
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Figure 5.37: Computation of the second input impedance.

and we can calculate the open-loop impedance as:

Z ′ol,2 = Ri +R1‖(R2 +Ro) = 2 MΩ

and the loop gain as:

Gloop,2 = −A(s)
Ri‖R1

Ri‖R1 +R2 +Ro
= −0.09A(s).

Figure 5.38: Computation of the loop gain and impedance reconstruction in this
second case.

In the low frequency limit, this gives:

Z ′2 = 2 MΩ · (1 + 0.09 · 2 · 106) ' 360 GΩ

and at the end we obtain the following input impedance:

Z2 = R3 +R4‖Z ′2 ' R3 +R4.

5.3.3 Buffer stage

Consider the buffer stage represented in Figure 5.39, in which we have the
following values:

R = 900 Ω, Ri = 1 MΩ, C = 20 nF, Ro = 10 Ω
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Figure 5.39: Buffer stage considered.

GWBP = 1 MHz, A0 = 100 dB.

Calculate the loop gain by breaking in the three different points A, B and C
and try to choose a compensation scheme if the phase margin of this network is
not enough.

Figure 5.40: Buffer stage when the loop is broken in point A.

Figure 5.41: Reconstruction impedance when the loop is broken in point A.

The first point in which it is possible to break the loop is point A, obtaining
the network represented in Figure 5.40. In this scheme, it is possible to add a
compensation impedance Z as in Figure and, from the network, we can observe
that it will be equal to:

Z = R+
1

sC
‖Ri = R+

Ri
1 + sCRi

=
R+Ri + sCRRi

1 + sCRi
.

Applying a test source (no matter which one), we can obtain:

V − =
Ri‖ 1

sC

Ri‖ 1
sC +R

VS

therefore the output voltage will be:

Vo = −A(s)
Ri‖ 1

sC

Ri‖ 1
sC +R

· Z

Z +Ro
VS
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thus giving the following loop gain:

Gloop,A = −A(s)
Ri‖ 1

sC

R+Ro +Ri‖ 1
sC

.

Figure 5.42: Buffer stage when the loop is broken in point B.

Breaking in the point B, the reconstruction impedance will be:

Z = Ri.

But since:

V − = VS

we obtain:

Vo = −A(s)VS
Ri‖ 1

sC

Ro +R+Ri‖ 1
sC

thus giving the following loop gain:

Gloop,B = −A(s)
Ri‖ 1

sC

Ro +R+Ri‖ 1
sC

as in the previous case.

Figure 5.43: Buffer stage when the loop is broken in point C.

Figure 5.44: Reconstruction impedance when the loop is broken in point C.
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In the last case, when the loop is broken in point C, the reconstruction
impedance can be neglected since the output voltage Vo is directly set by the
ideal voltage source. In fact:

V − =
Ri‖ 1

sC

R+Ro +Ri‖ 1
sC

VS

and the output voltage will be:

Vo = −A(s)V −

thus giving the following loop gain:

Gloop,C = −A(s)
Ri‖ 1

sC

R+Ro +Ri‖ 1
sC

This is a consequence of the fact that we are dealing with an ideal voltage
controlled voltage source. Plugging in the numbers, we can obtain that:

Gloop = −A(s)
Ri‖ 1

sC

R+Ro +Ri‖ 1
sC

= − A0

1 + sτ

Ri
1+sCRi

R+Ro + Ri
1+sCRi

=

= − A0

1 + sτ

Ri
R+Ro +Ri + sCRi(R+Ro)

=

= − A0

1 + sτ

Ri
Ri +R+Ro

1

1 + sC[Ri‖(R+Ro)]
'

' − A0

1 + sτ

1

1 + sC[Ri‖(R+Ro)]

since we have noticed that:

Ri
Ri +R+Ro

' 1.

The time constant of the pole that we have obtained, therefore, is equal to the
product between the capacity C and the equivalent resistance. Moreover, we can
check the consistency of our result by observing that, without any capacitor, the
output would be determined by the partition Ri/(Ri+R+Ro). Substituting the
numbers, it is possible to demonstrate that the pole of the operation amplifier
is set in 10 Hz, while the other pole will be at 8.74 Hz.

Defining G1 and G2 as in the Bode plot reported in Figure 5.45, we can
write:

G1fp1 = G2fp2 → G2 = G1
fp1
fp2

= 114 ' 41 dB

and we can determine the crossover frequency as:

G2f
2
p2 = f2

c → fc =
√
G2fp2 = 93.2 kHz.

The phase margin will be surely quite low, since we are crossing the zero decibel
axis with a negative slope of two:

φm = 180◦ − 90◦ − arctan

(
fc
fp2

)
' 5◦
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Figure 5.45: Bode plot of the loop gain that we have obtained.

where the first −90◦ contribution is related to the presence of the pole within
the operation amplifier, that is at a very low frequency. Note that this phase
margin is obviously not enough, so we need to compensate for it. For the sake
of simplicity, we can neglect the input resistance Ri and we can try to find a
place where we can put a compensation capacitor. A first idea could be to put
it between the positive and the negative input pins of the operation amplifier:
however in this way the compensation capacitor will be in parallel to the other
capacitor C and this compensation scheme will surely not work. A possible
alternative, then, is to put it with one connected between Ro and R and the
other one connected to ground. To study whether a compensation capacitor is in
a good position for adding a zero, we need to study the behaviour of the network
in the high-frequency limit, where the capacitor is equal to a short-circuit. In
this condition, we want to retrieve the same transfer function (since capacitors
should not change the behaviour of the network in the high-frequency limit),
therefore also this position is not suitable for placing it, since it will lead to
a zero transfer in the high-frequency limit that is different from what we had
before.

Figure 5.46: Compensated network.

The only residual possibility is to place it in parallel to the resistor R, as in
Figure 5.46. In this position, studying the high-frequency limit, we can see that
it will not give a zero transfer function, thus providing a correct behaviour. The



5.3. I/O IMPEDANCES AND GAIN CALCULATIONS 317

loop gain, then, can be calculated as:

Gloop = −A(s)
1
sC

Ro +R‖ 1
sCc

+ 1
sC

=

= −A(s)
1
sC

Ro + R
1+sCcR

+ 1
sC

=

= −A(s)
1 + sCcR

sCRo(1 + sCcR) + sCR+ 1 + sCcR
=

= −A(s)
1 + sCcR

1 + s(CR+ CcR+ CRo) + s2CCcRRo

where we can immediately recognize the presence of three additional terms that
depend on the compensation capacitor Cc. Using this compensation capacitor,
therefore, we have obtained an additional zero and an additional pole, since the
two capacitors of the network are one independent from the other. However, the
contributions coming from these two capacitors are mixing in the position of the
two poles. Studying the circuit, we can try to solve the second order equation
that we have obtained at the denominator of the loop gain and find the position
of the two poles. In a design problem, however, at least the compensation ca-
pacitance Cc is not known and, therefore, we need to find some approximations
for the position of the poles.
Assuming that the two poles are well separated in the frequency domain, since
in general:

Cc � C

the compensation capacitor will probably be responsible for the high-frequency
pole, while the other capacitor C will be responsible for the low-frequency one.
At low frequencies, the compensation capacitor Cc can be approximated with
an open circuit and we can calculate the equivalent resistance of the second
capacitor C, thus obtaining the following position for the associated pole:

fp,LF =
1

2πC(R+Ro)
.

In the high-frequency limit, we will probably be beyond the frequency of the pole
given by the capacitor C and thus it can be approximated with a short-circuit,
thus giving:

fp,HF =
1

2πCc(R‖Ro)
.

We have thus found that the pole of the capacitor C is not changing, we are
only adding a pole and a zero through the compensation capacitor Cc. In this
case, we want to have this zero exactly at the crossover frequency of the previous
Bode diagram, while the high-frequency pole must be at a frequency higher than
the crossover frequency. From their expressions:

fz =
1

2πCcR
, fp,HF =

1

2πCc(R‖Ro)

and this is consistent with the following consideration:

R‖Ro � R ⇒ fp,HF � fz.
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We can thus calculate:

fz =
1

2πCcR
= 93.2 kHz

thus obtaining the following value for the compensation capacity:

Cc =
1

2πfzR
= 1.88 nF

that gives the following position for the high-frequency pole:

fp,HF ' 8.5 MHz.

A last, alternative possibility was to place the compensation capacitor in series
both to R and Ro; this will lead to the introduction of a zero. However, this
kind of compensation can never be performed. To understand why, it is enough
to study the low-frequency limit of the device, in which the capacitors are open
circuits. In this condition, in fact, the open-loop gain is zero and the loop is open.
We are therefore completely compromising the DC behaviour of the device, that
should be preserved, otherwise we are completely changing the functionality of
the circuit. We can thus observe that we always have to place the compensation
capacitors in parallel with other elements of the network, never in series with
them.
A second alternative for finding the position of the poles of the compensated
circuit under the assumption of well-separated poles is to write the denominator
of the loop gain as:

(1+sτ1)(1+sτ2) = 1+s(τ1+τ2)+s2τ1τ2 = 1+s[CR+CcR+CRo]+s
2CCcRRo.

However, if the poles are well-separated:

τ1 � τ2

and therefore this product can be rewritten as:

(1 + sτ1)(1 + sτ2) ' 1 + sτ1 + s2τ1τ2 =

= 1 + s[CR+ CcR+ CRo] + s2CCcRRo

thus obtaining:

τ1 = CR+ CcR+ CRo, τ2 =
CCcRRo

τ1
=

CCcRRo
CR+ CcR+ CRo

.

This is an alternative way of avoiding the solution of the previous second order
equation. In this case, the positions of the poles will be:

fp,LF =
1

2πτ1
=

1

2π(CR+ CcR+ CRo)
' 8 kHz

fp,HF =
1

2πτ2
=
CR+ CcR+ CRo

2πCCcRRo
' 9.4 MHz

and we can note that they are not exactly equal to the previous ones. These last
two positions, in fact, are slightly less approximated solutions of the second order
equation, but they reduce to the first ones under the following assumptions:

Cc � C, Cc → 0.
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|Gloop|

log(f)

G0

G1

fp0 fp1

fz fp2

Figure 5.47: Bode diagram of the magnitude of the loop gain in the compensated
circuit.

Referring to the Bode diagram of the compensated network that is reported
in Figure 5.47, we can calculate:

G0fp0 = G1fp1, G1f
2
p1 = f2

z

obtaining:

f2
z = (G1fp1)fp1 = G0fp0fp1 = A0

1

2πτ

1

2π(CR+ CRo + CcR)

and solving for the frequency of the zero we can calculate, from it, the value
of the compensation capacitance. Alternatively, in the denominator of the last
equation we can neglect the presence of the compensation capacitor Cc, obtain-
ing: (

1

2πCcR

)2

=
A0

4π2τC(R+Ro)

thus obtaining9:

Cc =
1

R

√
τC(R+Ro)

A0
' 198 nF

that is almost equal to the value that we have obtained before. This is, therefore,
a way of solving, at least in a first approximation, a problem that would have
required, to be solved exactly, more complicated simulations. In general, with
these approximate methods it is difficult to obtain an accuracy that higher than
a factor of two. Back to the expression of the loop gain:

Gloop =
A0

1 + sτ

1 + sCcR

1 + s(CR+ CRo + CcR) + s2CCcRRo

an alternative possibility is to directly work on the Bode diagram that is rep-
resented in Figure 5.47. In fact, at a certain frequency the Bode diagram is an

9The result that we have reported have been calculated without this last assumption of
neglecting the compensation capacitance in the denominator of the right hand-side of the last
equation.
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approximation of the magnitude of the loop gain that depends exclusively on
the poles and zeros that are placed at a frequency that is lower than the con-
sidered one. In this case, before the frequency of the zero, it will not contribute
to the loop gain and we can approximate the associated term as:

1 + sCcR ' 1.

From an analogous reasoning, since we are beyond the pole of the operation
amplifier:

1 + sτ ' sτ

and considering the denominator, assuming again that the two poles are well
separated:

τ1 � τ2 : (1 + sτ1)(1 + sτ2) ' 1 + sτ1 + s2τ1τ2.

Near to the frequency of the zero, however, we are beyond the low-frequency
pole a before the high-frequency pole, therefore we can write their approximated
contributions as:

1 + sτ1 ' sτ1, 1 + sτ2 ' 1

thus obtaining:
(1 + sτ1)(1 + sτ2) ' sτ1.

However, from the exact expression of the loop gain, we can observe that the
term depending on the first power of s in the denominator will be:

sτ1 ' s(CR+ CRo + CcR)

and therefore the first section of the Bode diagram in which the slope is equal
to minus two can be approximated as:

Gloop '
A0

s2τ(CR+ CRo + CcR)
.

Setting this approximated loop gain to be equal to one, it is possible to find the
frequency of the zero considered:

ω2 =
A0

τ(CR+ CRo + CcR)
→ fz =

1

2π

√
A0

τ(CR+ CRo + CcR)

that is exactly equal to the value that we have found in the previous approxi-
mation.
We have thus obtained several different ways of finding an approximate position
of the poles and zeros.
Another possible alternative, one might think, was to place the compensation
capacitance in parallel to the output resistance Ro. However, it is important to
remember that this is impossible in real devices, where the output resistance Ro
is actually inside the operation amplifier, thus these pins are not accessible on
the device. The same identical reasoning applies in the case we want to place
something in series to the input impedance.
A last question might be: is it possible to compensate this circuit by adding a
resistor? A possibility, in this case, is to add a compensation resistor Rc between
the output node and the capacitor C. In this way, we are slightly changing the
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position of the pole of the network and we are adding a zero, that will be placed
at:

fp =
1

2πC(Rc +R+Ro)
, fz =

1

2πCRc
.

In this case, this is actually the simplest possible compensation scheme.

5.4 Multiple feedback loops

In this section, we will deal with the problem of studying the stability of networks
in which we have many different feedback loops. In general, this is a quite
complicated problem to address, unless we are dealing with two particular cases:

• the two loops are in parallel: there is a common node that can be used as
breaking point;

• the two loops are “nested”: there are smaller loop that are part of a bigger
one and they can be replaced using the associated closed-loop transfer
function, thus solving the biggest one.

5.4.1 High-pass amplifier

Figure 5.48: The high-pass filter considered.

Considering the high-pass filter represented in Figure 5.48:

R = 8 kΩ, C1 = 1 nF, C2 = 10 nF

GBWP = 10 MHz, A0 = 120 dB

calculate the ideal gain, the stability, the loop gain and the closed-loop gain.
From the circuit, in an ideal situation, we can write:

V + = Vi
sC1R

1 + sC1R
= V − = Vo

and therefore, in an ideal circuit, we will not have any current flowing through
the capacitor C2, therefore we can eliminate it. The ideal gain of this network,
then, can be written as:

Gid =
sC1R

1 + sC1R
.
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Figure 5.49: Ideal gain of the high-pass filter considered.

The frequency of the pole of the network, then, is equal to:

fp =
1

2πC1R
= 20 kHz

and thus, from an ideal point of view, we have obtained an high-pass filter.

Figure 5.50: Open-loop network for the ideal high-pass filter.

To calculate the loop gain, the capacitor C2 comes into play. In particular,
we can notice the presence of two different feedback loops, one going from the
output to the negative input pin, the other going from the output to the positive
input pin. The stability of the whole network, therefore, will be ensured when
both loop are stable. Since there is a common node for both networks, we can
cut the loop at this node, opening both the loops at the same time. Cutting in
this point, we obtain that:

V − = VS

and defining the following impedance:

Z = C1‖R =
R
sC1

R+ 1
sC1

=
R

1 + sC1R
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we obtain that:

V + = VS
Z

Z + 1
sC2

= VS
R

1 + sC1R

sC2(1 + sC1R)

sC2R+ 1 + sC1R
=

= VS
R

���
��1 + sC1R

sC2��
���1 + sC1R

1 + s(C1 + C2)R
=

= VS
sC2R

1 + s(C1 + C2)R
.

We can immediately observe that if the source term VS is grounded then the
two capacitors are in parallel:

C1‖C2

and this is consistent with the result that we have obtained. This gives the
following output voltage:

Vo = A(s)(V + − V −) = −A(s)

(
1− sC2R

1 + s(C1 + C2)R

)
VS =

= −A(s)
1 + sC1R

1 + s(C1 + C2)R
VS

thus giving the following loop gain:

Gloop = −A(s)
1 + sC1R

1 + s(C1 + C2)R
.

In our loop gain, therefore, we have two poles, one that is related to the operation
amplifier and the other that comes from the network, and one zero:

fp0 =
GBWP

A0
' 10 Hz, fp1 =

1

2π(C1 + C2)R
' 1.8 kHz

fz =
1

2πC1R
' 20 kHz.

Figure 5.51: Loop gain of the high-pass filter considered.

Considering the Bode diagram of the loop gain that is represented in Figure
5.51, we can calculate:

A0fp0 = G1fp1 ⇒ G1 = A0
fp0
fp1

= 5530 ' 75 dB
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and analogously:

G1f
2
p1 = G2f

2
z ⇒ G2 = G1

fp1
f2
z

= 45 ' 33 dB.

Note that in this case we are crossing the zero decibels axis with a negative
and unitary slope, therefore the phase margin will probably be satisfactory. The
crossover frequency can be evaluated by writing:

f0dB = G2fz ⇒ f0dB = G2fz = 900 kHz.

Figure 5.52: Calculation of the open-loop gain of the high-pass filter considered.

Before calculating the closed-loop gain of the network, then, we need to
calculate the open-loop gain Gol. To do this, we need to simultaneously discon-
nect both the loop and we need to ground them, as represented in Figure 5.52.
Considering the following impedance:

Z = R‖C2 =
R
sC2

R+ 1
sC2

=
R

1 + sC2R

this gives the following output voltage:

Vo = A(s)
Z

1
sC1

+ Z
Vi = A(s)

R
1+sC2R

1
sC1

+ R
1+sC2R

Vi =

= A(s)
sC1R

1 + s(C1 + C2)R
Vi

thus giving the following open-loop gain:

Gol = A(s)
sC1R

1 + s(C1 + C2)R
.

Note that since the following relation holds:

Gol = −Gloop ·Gid
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Figure 5.53: Open-loop and ideal gain of the high-pass filter considered.

we could have determined this gain just considering the two previously computed
ones.

In this case, we have a zero in the origin and two poles at the following
frequencies:

fp0 =
GBWP

A0
= 10 Hz, fp1 =

1

2π(C1 + C2)R
= 18 kHz.

To compute the gain indicated with G0 in Figure, we can write an approximation
of the open-loop gain when we are far below the first pole:

f � fp0 : Gol =
A0

1 + sτ

sC1R

1 + s(C1 + C2)R
' sC1RA0

and imposing it equal to one we can determine the frequency in which the
open-loop gain crosses the zero decibels axis for the first time:

sC1RA0 = 1 → f0 =
1

2πC1RA0
.

From this value, we can write:

1

f0
=
G0

fp0

thus obtaining:

G0 =
fp0
f0

=
GBWP

A0
2πC1RA0 = 2πCR ·GBWP = 503 ' 54 dB.

An analogous calculation can be written for finding the second crossover fre-
quency:

fc = G0fp1 =��2πC1�R
GBWP

��2π(C1 + C2)�R
' C1GBWP

C1 + C2
' 905 kHz.

Representing on the same graph also the ideal gain, we can immediately observe
that the closed-loop gain G will be the minimum between them.
Considering again the initial circuit, we can try to calculate the input impedance.
First of all, we can immediately recognize that the capacitor C1 is in series
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with the rest of the network. Moreover, we will not have any current flowing
through the capacitor C2, therefore we will neglect it. This means that the input
impedance, in the ideal case, can be written as:

Zin = R+
1

sC1
.

This is the starting point for the calculation of the real input impedance (that
we will not calculate), recognizing that the capacitor C1 is in series and the
resistance R is in parallel to the actual value of the input impedance. Removing
these two elements and studying the remaining network, we can immediately
observe that it will have an infinite ideal input impedance.

5.4.2 Low-pass filter

Figure 5.54: The low-pass filter considered.

Considering the low-pass filter in Figure 5.54:

R1 = R2 = 1 kΩ, C1 = C2 = 1 nF, GBWP = 10 MHz, A0 = 100 dB

calculate the ideal gain, the stability, the loop gain and the closed-loop gain.
Studying this circuit, we can immediately observe that:

V + = V − = Vo

and labelling V1 the voltage at the node between R1 and R2, I1 the current
flowing from C1 to that node, I2 the current flowing from R1 to that node and
I3 the current flowing from that node to R2 (and then through C2), we can
immediately write:

I1 + I2 = I3

that gives:

(Vo − V1)sC1 +
Vi − V1

R1
=
V1 − Vo
R2

=
V1

R2 + 1
sC2

= sC2Vo

or, alternatively:

Vo = V1

1
sC2

R2 + 1
sC2

= V1
1

1 + sC2R2
.

In our case:

sC1(Vo − V1) +
Vi − V1

R1
= sCVo, V1 = Vo(1 + sC2R2)
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and since:
C1 = C2 = C, R1 = R2 = R

we can write:

sCVo − sCVo(1 + sCR) +
Vi
R
− Vo
R

(1 + sCR) = sCVo

Vi
R

= Vo

(
2sC +

1

R
+ s2C2R

)
that gives the following output voltage:

Vo = Vi
1

1 + 2sCR+ s2C2R2

from which we can get the following ideal gain:

Gid =
1

(1 + sCR)2
.

This means that the network we are studying is a second order low-pass filter
with two coincident poles in:

fp =
1

2πCR
' 160 kHz.

Figure 5.55: Calculation of the loop gain of the low-pass filter considered.

To calculate the loop gain and to study its stability, we can turn off the input
source and break the two loops. As in the previous case, the two loop have a
common node and we will break the network exactly there, as it is represented
in Figure 5.55. Studying the network, we can immediately note that:

V − = VS

and defining the following impedance:

Z = R‖
(
R+

1

sC

)
=
R2 + R

sC

2R+ 1
sC

=
R(1 + sCR)

1 + 2sCR

we can write the following previously defined voltage:

V1 = VS
R(1 + sCR)

((((
(

1 + 2sCR

sC(((
((((1 + 2sCR)

sCR(1 + sCR) + 1 + 2sCR
=

= VS
sCR(1 + sCR)

1 + 3sCR+ (sCR)2
.
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From this, we can obtain the following value of the voltage at the positive input
pin:

V + = V1

1
sC

R+ 1
sC

= V1
1

1 + sCR
= VS

sCR

1 + 3sCR+ s2C2R2

thus giving the following output voltage:

V0 = (V + − V −)A(s) = A(s)VS

(
sCR

1 + 3sCR+ s2C2R2
− 1

)
=

= −A(s)
1 + 2sCR+ s2C2R2

1 + 3sCR+ s2C2R2
= −A(s)

(1 + sCR)2

1 + 3sCR+ s2C2R2

from which comes the following loop gain:

Gloop = −A(s)
(1 + sCR)2

1 + 3sCR+ s2C2R2
.

Note that the overall loop gain is negative, since to achieve the stability in gen-
eral we need to deal with negative feedback loops. If this were not the case, the
loop gain Gloop should have been much smaller than one to achieve stability.
The two capacitors in this network are not interacting one with the other and,
since they have the same value, it may seem to be a bad idea to assume the as-
sociated poles to be well separated in frequency. However, trying to exploit this
assumption anyway, we can first neglect the second order term at the denomi-
nator and then neglect the zeroth order term at the denominator, obtaining:

fp1 '
1

6πCR
' 53 kHz, fp2 '

1
2πCR

3

' 477 kHz.

Basically, between the two poles there is a factor of nine, therefore the error in
the position of the poles will be in the order of 1/9, that means an 11% of the
correct value. These two correct values can be found by computing:

−3±
√

9− 4

2
· 1

2πCR
=

{
60.8 kHz

416 kHz
.

Figure 5.56: Bode plot of the loop gain of the low-pass filter considered.

The two zeros of the loop gain are coincident and they are placed in:

fz =
1

2πCR
' 160 kHz.
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On the Bode plot, we can calculate the frequency of the first zero, that comes
from the operation amplifier, as:

fp0 =
GBWP

A0
= 100 Hz

thus obtaining the following gain:

G0fp0 = G1fp1 → G1 = G0
fp0
fp1

= 164 = 44 dB.

Analogously, for finding the second gain:

G1f
2
p1 = G2f

2
z → G2 = G1

f2
p1

f2
z

= 24 = 28 dB.

Last, we can find the crossover frequency as:

G2fp2 = f0dB → f0dB = G2fp2 = 100 MHz = GBWP.

Considering the loop gain of the operation amplifier, we can immediately observe
that it can be factorized as the gain of the operation amplifier and a factor:

1 + 2sCR+ (sCR)2

1 + 3sCR+ (sCR)2

that will be equal to one both in the low-frequency limit and in the high-
frequency limit, therefore it is not surprising that we are crossing the zero deci-
bels axis exactly in the gain-bandwidth product of the operation amplifier. The
phase margin, since we are crossing with a negative and unitary slope and there
is more than a decade between the last pole and the crossover frequency, will
be approximately 90◦.

Figure 5.57: Calculation of the open-loop gain of the low-pass filter considered.

We can now calculate the open-loop gain. Instead of considering the network
represented in Figure 5.57, we can obtain the loop gain from the following
expression:

Gol = −GloopGid = A(s)((
(((

((((1 + 2sCR+ (sCR)2

1 + 3sCR+ (sCR)2
· 1

���
���(1 + sCR)2

=

= A(s)
1

1 + 3sCR+ (sCR)2
.
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In the open-loop gain, therefore, we will have three poles in the previously
defined positions and, from the associated Bode diagram, we can calculate the
following gain terms:

G0fp0 = G1fp1 → G1 = G0
fp0
fp1

= 164 = 44 dB

G1f
2
p1 = G2f

2
p2 → G2 = G1

f2
p1

f2
p2

= 24 = 28 dB.

Figure 5.58: Bode plot of the open-loop gain of the low-pass filter considered.

From the expression of the ideal gain, it is then possible to express the overall
gain G. The frequency at which the ideal gain is equal to the open-loop gain
is the crossover frequency f0dB and, at this frequency, the loop gain will be
identically equal to zero. This gives:

f2
p3 = G3f

2
0dB → G3 = 2.5 · 10−4 = −72 dB.

5.4.3 Current source

Figure 5.59: Network considered.
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Consider the network represented in Figure 5.59:

R1 = 25 kΩ, R = 2.5 kΩ, GBWP = 5 MHz

in which we have a certain load RL and a current as an output; calculate the
ideal gain, the loop gain and the output impedance of the network.
The buffer, that is represented in Figure as a triangle with one input and one
output, has a unitary gain, an infinite input impedance and a zero output
impedance. The ideal gain, then, can be calculated by considering that:

V + =
Vi + Vo

2
→ V2 = Vi + Vo

and this gives the following current:

Io =
V2 − Vo
R

=
Vi + Vo − Vo

R
=
Vi
R

from which we get the following ideal gain:

Gid =
1

R
.

Therefore, the output current Io is independent, at least from an ideal point of
view, from the load resistance RL and we are dealing with a transconductance
amplifier.

Figure 5.60: Calculation of the loop gain in the amplifier considered.

To calculate the loop gain, we need to cut the network at the end of the
operation amplifier as in Figure 5.60, obtaining10:

V − =
VS
2
, V3 = VS

RL
R+RL

, V + =
VS
2

RL
R+RL

thus obtaining the following output voltage:

Vo = A(s) ·
(
V + − V −

)
= A(s)

(
RL

2(R+RL)
− 1

2

)
VS

10We have defined V3 the voltage at the input of the buffer stage.
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that gives the following loop gain:

Gloop = −A(s)
RL

2(R+RL)
.

Again, the loop gain is negative and this is good for the stability of the network.
It is possible to note that there is only one pole that is related to the operation
amplifier, therefore the phase margin will be surely 90◦ and the closed-loop
system is stable. If we assume the loop resistance to be small:

RL � R ⇒ Gloop ' −
A(s)

2

while if it is large:

RL � R ⇒ Gloop ' −
A(s)

2

R

RL
.

This means that everything is fine with respect to the stability of the network,
the only drawback is that when we have an high resistive load this gives a
reduction of the bandwidth and a reduction of the gain of the loop gain. It is
important to note that since |Gloop|−1 is proportional to the error between the
ideal gain and the real one, a reduction in the loop gain gives an increase in the
error of the network.

Figure 5.61: Loop gain in the amplifier considered depending on the gain of the
operation amplifier.

To calculate the impedance, since we are dealing with the output impedance,
we have to get rid of the load resistance RL and substitute it with a test source.
First, we need to obtain the ideal value of the impedance. Using a current source,
this gives:

V + =
VS
2
, V − =

VS
2

and therefore at the input of the buffer:

V3 =
R1 +R1

R1
V − = VS .

Therefore, the current is not flowing neither in the buffer nor through the R
resistor, thus giving:

Zid =∞.
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This value makes us understand that it is better to use, as a test source, a
voltage source, thus giving the network represented in Figure 5.63.

I0

R0 RL

Figure 5.62: Norton equivalent of the network considered as seen from the load
resistance.

In an ideal case, we could have considered the Norton equivalent of the circuit
as seen from the load resistance RL, but since we have just calculated that the
current flowing in the load resistance is independent from its value:

I0
R0

R0 +RL
= I0

this is possible if and only if:

R0 → ∞.

Figure 5.63: Calculation of the output impedance in the amplifier considered.

This means that the output impedance can be written as:

Zout = Zol(1−Gloop)

where the loop gain comes from the circuit represented in Figure 5.64.

Studying this circuit, we obtain:

Gloop = −A(s)

2
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Figure 5.64: Calculation of the loop gain in the amplifier considered.

while setting the voltage controlled voltage source in the operation amplifier
equal to zero we can obtain the open-loop resistance:

A = 0 : Zol = R.

Putting these two results together, we obtain the output impedance:

Zout = Zol(1−Gloop) = R

(
1 +

A(s)

2

)
.

At low frequencies, this gives:

Zout ' R
(

1 +
A0

2

)
' 10 GΩ.

Alternatively, we could have used the Blackman’s formula, in which we have
to calculate two loop gains, one “short-circuited” in which the load resistance
is replaced by a short-circuit, the other “open circuited” in which the load
resistance is replaced by an open circuit. In the short-circuit case:

Gloop|sc = −A(s)

2

as before, while in the open loop case:

V + =
VS
2
, V − =

VS
2
→ Vo = 0 → Gloop|oc = 0.

Therefore, using this formula we obtain again the previous result:

Z = Zol
1−Gloop|sc
1−Gloop|oc

= R

(
1 +

A(s)

2

)
.

It is important to remember that, when using this formula, one of the two loop
gains is always expected to be equal to zero, otherwise there is something wrong.
At first sight, this formula seems to be easier; however, it will work only if one
of the two loop gains will have an ideal value of zero or infinity. If there is
something in parallel or in series to the network, it will not work.

We can now replace the buffer with the equivalent non-ideal network, as in
Figure 5.65. In particular, it is important to note that the loop in this second
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Figure 5.65: Network with a non-ideal buffer stage.

operation amplifier (identified as OA2) is not in parallel to the other loops of
the network. To study its stability, therefore, we need to consider all the loops
that are present. First of all, we can consider the first operation amplifier as an
ideal amplifier and study the stability of the second one. Cutting the loop at
the end of the second operation amplifier, we can observe that11:

V −2 = VS , V
+
1 =

VS
2
, V −1 =

VS
2
, V3 = VS

where we have considered that the network having as an input the positive
input pin of the first operation amplifier and as an output the output pin of the
first operation amplifier can be considered as an ideal stage with gain two. This
gives:

V +
2 = VS

RL
R+RL

thus giving the following output:

Vo = A(s) ·
(

RL
R+RL

− 1

)
VS = −A(s)

R

R+RL
VS

from which we obtain the following loop gain for the second operation amplifier:

Gloop,2 = −A(s)
R

R+RL
.

It is important to note that this loop gain is different from the one that we have
obtained previously when studying the other loop when the second operation
amplifier was considered as an ideal one. Moreover, also this second loop is sta-
ble.
However, the fact that we are considering alternatively one operation amplifier
or the other as an ideal stage is not completely correct. Considering again the
circuit represented in Figure 5.65, we want now to study the effects of the fact

11Where again V3 is referred to the output voltage of the first operation amplifier.
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that both operation amplifiers are not ideal and then to calculate the impedance
of the first operation amplifier12. To study the effect of having a non-ideal oper-
ation amplifier, we can replace the buffer with its closed-loop transfer function
(or gain):

G =
Gol

1−Gloop
=

A(s)

1 +A(s)
−−−−−−−→
A(s)→+∞

1.

Considering the network, this gives:

V −1 =
VS
2
, V +

1 =
RL

R+RL
T (s)

1

2
VS , T (s) =

1

1 + sτ2

and therefore the output voltage of the first operation amplifier can be written
as:

Vo =
A(s)

2
·

(
1−

RL
R+RL

1 + sτ2

)
=
A(s)

2
·

R
R+RL

+ sτ2

1 + sτ2
.

From this expression it is then possible to obtain the loop gain Gloop when also
the second operation amplifier is not an ideal one. The willing student can try
to do the opposite.

5.5 Different configurations of the Wheatstone
bridge

5.5.1 Wheatstone bridge and instrumentation amplifier

R (1
)

R
(1)

R
T

R

Vcc = 10 V

In. A.

+10 V

−10 V

Vo

Figure 5.66: Wheatstone bridge connected to an instrumentation amplifier.

Considering the Wheatstone bridge represented in Figure 5.66:

R = R(1) = 30 Ω, RT = 30 + 0.15T = 30

(
1 +

0.15

30
T

)
= 30(1 + xT )

12This study has been done in the solution to the exam of November 14th, 2011.
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where we have the following temperature and output voltage range (or dynamic
of the sensor):

T = 0− 100◦C, Vo = 0− 10 V

calculate the gain of the instrumentation amplifier and try to keep the dissipated
power below the following threshold value:

Pdis < 1 mW

in each one of the resistive elements of the network.
The input of the instrumentation amplifier can be written as:

Vi =
Vcc
4
x

where we have defined:

x =
0.15

30
T

therefore we obtain:

Vi =
Vcc
4
αT, α =

0.15

30
= 5 · 10−3 ◦C−1.

The maximum value of the input of the instrumentation amplifier then can be
written as:

T = 100◦C → Vi =
Vcc
4
α · 100 = 1.25 V

and therefore the gain that is needed is:

G =
Vo,max
Vi,max

=
10

1.25
= 8.

The maximum value of the relative variation of the resistance will be:

xmax = 5 · 10−3 · 100 = 0.5

and we can observe that this is a pretty large value. In this case, since the relative
variation is so large, we have to check the linearity error that is involved in this
approximation:

ε =
x

2
' 0.25 = 25%

and this is a quite big error.
In a more correct way, therefore, we can use the exact value for the output
voltage of the Wheatstone bridge. At the maximum possible temperature:

RT,max = 30 + 0.15 · 100 = 45 Ω

and therefore:

Vi = Vcc

(
RT,max

R+RT,max
− 1

2

)
= Vcc

(
45

30 + 45
− 1

2

)
= 1 V

and thus the gain needed is:
G = 10.
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We can immediately observe that this is different from what we have obtained
in the previous case, where the voltage Vi at the input of the operation amplifier
was 1.25 V, thus being off of 25%.
To study the power dissipation, we can observe that the worst case for the power
dissipation takes place at 0◦, where the variable resistors RT has its maximum
value and therefore we have the maximum current flow. In this condition, the
power dissipated over each resistive element can be written as:

P = I2R =

(
Vcc
2R

)2

= 833 mW� 1 mW.

We are therefore quite far from the requirement on the power dissipation. To
match it, the simplest possibility is to reduce the bias voltage of the Wheatstone
bridge Vcc:

P =
V 2
cc

4R
≤ 1 mW

thus obtaining:

Vcc ≤ 200 mV.

The disadvantage, in this case, is that the output of the bridge is directly pro-
portional to the bias voltage of the bridge, therefore we are also reducing the
signal by a factor of 50. This means that we have to increase the gain of the
instrumentation amplifier, since the new input voltage to this device will be:

Vi,max =
1 V

50
= 20 mV ⇒ Gmax = 500.

However, this might not be possible due to the presence of the noise, that could
lead to a complete cancellation of the signal.
Alternatively, it is possible to observe that the power dissipation is controlled
by the current flowing in the resistors, that can thus be reduced by increasing
the series R+RT in the worst temperature condition, at 0◦C. Since the variable
resistor RT is fixed from the problem, we can unbalance the bridge by increas-
ing the values of the two upper resistance R (that in this second part of the
problem will be called R(1)). In fact, the lower right resistor cannot be changed,
otherwise the bridge will be unbalanced. We can thus write the input voltage of
the instrumentation amplifier as:

Vi = Vcc

(
R(1 + x)

R(1 + x) +R1
− R

R+R1

)
where in this case:

R1 > R.

Defining the following coefficient:

R

R+R1
= k
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we can write the following input voltage of the instrumentation amplifier:

Vi = Vcc

(
R(1 + x)

R(1 + x) +R1
− k
)

= Vcc

 R(1 + x)

(R+R1)
(

1 + Rx
R+R1

) − k
 =

= Vcc

(
k(1 + x)

1 + kx
− k
)

= Vcc

(
�k + kx− �k − k2x

1 + kx

)
=

= Vcc

(
kx(1− k)

1 + kx

)
' Vcckx(1− k)

where in the last equivalence we have assumed that both k and x are small.
From the constraint on the power dissipation:

PT =

(
Vcc

R

R+R1

)2
1

R
=
V 2
cc

R
k2 = 1 mW

we can obtain:

k ' 1.7 · 10−2 ⇒ R

R1
' 57.

The maximum value of the output of the bridge, in this condition, can be written
as:

Vi,max = Vccxmaxk(1− k) ' 85 mV

thus giving the following requirement on the gain:

G ' 10 V

85 mV
' 117.

This is a better solution with respect to the previous one, since the power
dissipation is low enough to satisfy the requirement but the gain needed for the
instrumentation amplifier is smaller than in the previous case.

5.5.2 Wheatstone bridge and operation amplifiers

Considering the network represented in Figure 5.67, where:

R = 250 Ω, RT = R(1 + αT ), α = 2 · 10−4 ◦C−1

choose the best output of the network between V1 and V2 for measuring a
variation of the temperature T in the variable resistor in the bridge and then find
the bias voltage Vcc of the Wheatstone bridge that keeps the power dissipation
over a resistor R limited:

PR < 1.5 mW.

First of all, from the network we can note that:

V +
1 = 0 = V −2 = V +

2

and therefore we will have:
V −1 = 0

thus giving the following current:

I =
Vcc
R
.



340 CHAPTER 5. EXERCISES
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V2
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Figure 5.67: Network considered.

From this, recognizing that the first operation amplifier is in an inverting con-
figuration where RT is the feedback resistor and R is the resistor between the
inverting pin and the input voltage Vcc, we can obtain the output voltage of this
stage as:

V1 = −IRT = −RT
R
Vcc = −Vcc(1 + αT ).

From this, we can obtain the following currents:

I1 =
Vcc
R
, I2 =

Vcc(1 + αT )

R
= −V1

R

thus obtaining:

IR = I1 − I2 =
Vcc
R
− Vcc

R
(1 + αT ) = −Vcc

R
αT.

Therefore, the output of the second operation amplifier can be written as:

V2 = −RIR = VccαT.

From the expression of the two output voltages V1 and V2, we can see that
both are linear with respect to the temperature and, moreover, they have the
same sensitivity. However, the output of the first operation amplifier V1 has a
certain bias, constant signal that is superimposed to the variation related to the
temperature, therefore it is better to choose V2 as the output of the network:

Vo = V2.

Note that the result we have obtained is perfectly linear: the two operation
amplifiers linearise the output of the bridge and they increase of a factor four
the sensitivity of a standard Wheatstone bridge.
The power dissipated on a resistor will be maxima at 0◦C, where:

RT = R
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and thus it can be written as:

Pd =
V 2
cc

R
< 1.5 mW

thus giving the following limitation for the bias voltage of the bridge:

Vcc < 612 mV.

If we want, for example, to be able to discriminate the following variation in
temperature:

∆Tmin = 0.1◦C

the we must have:

V2,min = Vccα∆T = 12 µV.

5.5.3 Strain gauge

IB

G 4

I1

G
1

I2

G
3

I1 G 2

−

+

VB

1 Vo

Figure 5.68: Circuit considered.

Consider the strain sensor represented in Figure 5.68, where the variable
resistors G1 and G2 are place on different sides of the sensor, thus experiencing
a strain with different sign (one is elongating, the other is contracting). Assuming
the following values to be known:

G = 2, R(0◦C) = 150 Ω, α = 3 · 10−3 ◦C−1

consider what happens when we have a change ∆T in the temperature of the
device and what happens when we have a deformation of G1 and G2.
To evaluate the temperature variation ∆T , we can assume to not have any
mechanical deformation and that the temperature is uniform over the whole
bridge. In this case, any resistor can be written as:

R = R0(1 + αT )
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under the assumption of uniformity of the temperature over the bridge. We have
thus four equal elements and, if VB is the bias voltage in the upper part of the
bridge, due to the same considerations of the previous exercise we can set the
bottom node of the bridge and the output of the amplifier at −VB . This allows
us to evaluate the following current:

I1 =
VB
R

and this implies:

I2 =
VB
R
.

However, since:

I1 = I2 =
IB
2

we can obtain the bias voltage:

VB =
RIB

2

and this condition gives:

Vo = VB −RI2 = 0.

This circuit, therefore, is automatically compensating the temperature varia-
tions.
When G1 and G2 changes due to strains:

ε =
∆l

l

we can write the variation in the resistance as:

R = R0(1± x) = R0(1±G · ε)

where the sign depends on the direction of the strain considered (elongation or
compression). Since the bias voltage VB is not changed, the whole left hand-side
arm of the bridge is not changed. Studying the variations on the other arm:

I2 =
2VB

RG1 +RG2
=

2VB
R0(1 + x) +R0(1− x)

=
2VB
2R0

=
VB
R0

.

Therefore, also the current flowing in this arm is equal due to the fact that the
bias voltage VB has not changed. Then, the value of the output voltage:

Vo = VB −RG1I2 =
R0IB

2
− IB

2
R0(1− x) =

R0IB
2

Gε.

also in this case, therefore, the output is fully linear with respect to the quantity
that we want to measure.
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Figure 5.69: Network considered.

5.5.4 An exercise on multiple feedback loops

This exercise comes from the exam of September 9th, 2009. Consider the voltage
controlled network represented in Figure 5.69, where:

R = 1 kΩ, C = 160 nF, A0 = 105, foa = 10 Hz

and calculate the ideal gain and the loop gain of the network13.
From the circuit, we can immediately observe that:

V −2 = 0 = V +
2

and this gives:
V +

1 = V −1 = 0.

Therefore, since the current I1 can only flow through the feedback resistance R
of the first operation amplifier, defining V1 to be the output of the first operation
amplifier we will have:

V1 = −I1R.
Studying now where the current I2 can flow, we can immediately observe that
across the resistor R connecting the output of the first operation amplifier to
the inverting pin of the second one we will have a current equal to I1:

V1

R
= I1

and thus the current Ic flowing through the feedback capacitor of the second
operation amplifier will be:

Ic = I2 +
V1

R
= I2 − I1.

This allows us to calculate the output voltage of the second operation amplifier:

Vo = − Ic
sC

= −I2 − I1
sC

=
I1 − I2
sC

.

13Before starting, it is necessary a hint: never try to compute a current balance at the output
of an operation amplifier. In fact, it is determined by a voltage controlled voltage source that,
being an ideal voltage source, can sustain every possible current.
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Since we are interested in the difference between the two input currents in the
time domain, we can see that this network will give an output that is propor-
tional to the integral of that quantity.
The loop gain, then, have to be discussed depending on the different loops that
we are considering, checking first the stability of the loops around the first op-
eration amplifier (assuming the second one to be ideal) and then the stability
of the loops around the second one (assuming the first one to be ideal).

Figure 5.70: Computation of the loop gain of the first operation amplifier and of
the second one when the other is considered to be an ideal operation amplifier.

To study the loop gain of the first operation amplifier when the second one
is an ideal operation amplifier, we can consider that the only effect of the second
operation amplifier is to set the inverting pin of the second operation amplifier
at ground. According to this consideration, then, we can break the first loop
and study the equivalent network that is represented in the left hand-side part
of Figure 5.70. In this case:

V −1 = VS , V
+
1 = 0

and the output voltage will be:

Vo = −A(s)VS

thus giving the following loop gain:

Gloop,1 = −A(s).

In the second case, when the first operation amplifier is assumed to be an ideal
one, then both the input pins of the first operation amplifier will have an infinite
input impedance and thus we will not have any current flowing through them.
This gives:

V +
1 = V −1 = V1 = V −2

and therefore the equivalent network is the one represented in the right hand-
side of Figure 5.70. However, since we cannot have any current flowing through
the capacitor, we obtain that:

V −2 = VS

that gives the following output voltage:

Vo = −A(s)VS

from which we obtain the following loop gain:

Gloop,2 = −A(s).



5.5. WHEATSTONE BRIDGE 345

We can now try to remove these ideal characteristics of the operation amplifiers,
thus calculating the two loop gains when the other operation amplifier is not
an ideal one. Using the hint given in the exam, we first can try to compute the
equivalent impedance of the non-ideal closed-loop operation amplifier.

Figure 5.71: Computation of the loop gain of the first operation amplifier and
of the second one when the other is not considered to be an ideal operation
amplifier and it is replaced by the associated equivalent impedance.

First of all, we can try to compute the loop gain of the second operation
amplifier when the first one is represented by its equivalent impedance, as it
is represented in the right hand-side part of Figure 5.71. Before computing the
loop gain, therefore, we have to study the value of this equivalent impedance.
In the ideal case, as we have seen previously, the input impedance of the first
operation amplifier is infinite, there will not be any current flowing from the
negative pin of the second operation amplifier toward the rest of the network
and therefore the associated ideal impedance is:

Zid =∞.

This means that the equivalent impedance can be written as:

Z = Zol(1−Gloop).

Considering therefore only the left hand-side part of the network and connecting
a test source where once we had the negative input pin of the second operation
amplifier, we can shut off the voltage controlled voltage source inside the first
operation amplifier and calculate the open-loop impedance as:

Zol = R.

Cutting then the loop at the output of the operation amplifier, applying a test
source and grounding the negative input pin of the second operation amplifier,
we can immediately observe that the loop gain of this network will be:

Gloop = −A(s).

Therefore, the equivalent impedance for the first loop when the first opera-
tion amplifier is not assumed to be ideal is equal to:

Z = R(1 +A(s)).



346 CHAPTER 5. EXERCISES

−

+

R

R

−
+ VS

(1)

−

+

R

−+

VS

R

(1)
Vo

Figure 5.72: On the left, computation of the open-loop impedance equivalent to
the first loop; on the right, computation of the loop gain for the first loop.

Studying the remaining circuit, that is represented in the right hand-side of
Figure 5.71 we obtain:

V −2 = VS
Z

Z + 1
sC

=
sCZ

1 + sCZ
VS =

=
sCR(1 +A(s))

1 + sCR(1 +A(s))
VS

that leads to the following loop gain14:

Gloop,2 = −A(s)
sCR

(
1 + A0

1+sτ

)
1 + sCR+ sCRA0

1+sτ

=

= − A0

1 + sτ
·
sCRA0

(
1 + s τ

A0

)
1 + sCRA0 + s2τCR

.

From this expression, we can immediately observe that we will have two ze-
ros (one of them in the origin) and three poles. Aside from the pole given by
the operation amplifier, we can calculate the other two in an approximate way
assuming them to be well separated. In this case, for the low-frequency one:

1 + sCRA0 ' 0 → fpL =
1

2πCRA0
' 10−2 Hz

while for the high-frequency one:

sCRA0 + s2τCRA0 ' 0 → fpH =
A

2πτ
= GBWP = 1 MHz.

We can immediately observe that their approximate positions are very well
separated, therefore this approximation is meaningful. The frequency of the

14A lot of calculations, that should be trivial algebra, have been skipped.
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zero can then be calculated as:

fz =
1

2π τ
A0

=
A0

2πτ
= GBWP = 1 MHz.

Therefore, this zero and the high-frequency pole will be one near to the other.

Figure 5.73: Bode diagram of the loop gain obtained when we are not considering
any operation amplifier as an ideal one.

The low-frequency behaviour of this loop gain can be approximated as:

Gloop ' sCRA2
0

therefore this loop gain will be crossing the zero decibels axis for the first time
at:

sCRA2
0 = 1 → f0dB =

1

2πCRA2
0

= 10−7 Hz.

We can then calculate the gain at which we have the plateau:

1

f0dB
=

G1

fpL
→ G1 =

fpL
f0dB

= 105 = 100 dB.

Alternatively, we could have considered that in the flat region we are far before
the high-frequency poles and the zero, thus approximating the loop gain as:

Gloop '
sCRA2

0

1 + sCRA0
.

Moreover, at higher frequencies but again before the high-frequency pole and
zero, the loop gain will be similar to the gain of the operation amplifier, there-
fore it will cross the zero decibels axis exactly in the gain-bandwidth product
GBWP .

Replacing now the second operation amplifier with its equivalent impedance,
we can immediately calculate the ideal value of this impedance:

Zid,2 = 0
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Figure 5.74: On the left, computation of the open-loop impedance for the second
part of the network; on the right, computation of the loop gain for that part of
the network.

thus giving the following expression for the equivalent impedance:

Z2 =
Zol

1−Gloop
.

Since we have obtained that the ideal impedance is equal to zero, to calculate
the open-loop impedance we need to drive the device with a current source, as
represented in Figure 5.74. Therefore, grounding the output of the operation
amplifier we can obtain:

Zol =
1

sC

while the loop gain will be:
Gloop = −A(s).

This gives the following equivalent impedance for this network:

Z2 =
1
sC

1 +A(s)
.

Alternatively, we could have used Blackman’s formula to derive this expression.
Considering now the loop around the first operation amplifier, that is repre-
sented in the left hand-side of Figure 5.71, we can write:

V − = VS , V
+ = VS

Z2

Z2 +R

thus obtaining as an output voltage:

Vo = −A(s)

(
1− Z2

R+ Z2

)
VS = −A(s)

R

R+ Z2
VS

and this gives the following loop gain:

Gloop,1 = −A(s)
R

R+ Z2
= −A(s)

R

R+ 1
sC(1+A(s))

.
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Expanding this calculation, we can find that:

Gloop,1 = Gloop,2

but it is important to remember that this is not a general result: it holds only
for this circuit.

5.5.5 Another exercise on multiple feedback loops

Figure 5.75: Multiple loop network considered.

Considering the network represented in Figure 5.75, where:

RA = 10 Ω, R1 = 1 kΩ, R2 = 10 kΩ

compute the ideal gain of the network, its output impedance and the condition
on the load resistance that ensures a static precision better than 1%.
Assuming initially the operation amplifier to be ideal, we can study the circuit
and observe that:

V − = V1
R1

R1 +R2
= V +

and therefore this gives the following current:

I =
Vi − V +

R1
=

Vi − V2

R1 +R2
.

This allows us to calculate:

V + = V2 +R2I = V2 +
R2

R1 +R2
Vi −

R2

R1 +R2
V2 =

=
R2

R1 +R2
Vi +

R1

R1 +R2
V2 = V1

R1

R1 +R2

and therefore we obtain that:

Vi
R2

R1 +R2
=

R1

R1 +R2
(V1 − V2) =

R1

R1 +R2
Vo.

This gives therefore the following output voltage:

Vo =
R2

R1 +R2

R1 +R2

R1
Vi =

R2

R1
Vi
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that corresponds to the following ideal gain:

Gid =
R2

R1
.

Figure 5.76: Computation of the ideal output impedance and of the open-loop
output impedance.

To compute the output impedance of the circuit, we first have to consider
that the load resistance is not part of the network and thus we have to calculate
the ideal output impedance. From the circuit represented in Figure 5.76, we can
obtain that:

V2 = IS(R1 +R2), V + = ISR1 = V −

and since the current IS is flowing also in the upper resistors R1 and R2 we
have that:

V1 = IS(R1 +R2) → VS = V2 − V1 = 0

and therefore the ideal impedance will be:

Zid = 0.

This means that the output impedance of this network will be written as:

Z =
Zol

1−Gloop
.

Calculating the open-loop impedance, again from Figure 5.76 we obtain that:

Zol = [(R1 +R2)‖RA] +R1 +R2 = R1 +R2 +
RA(R1 +R2)

R1 +R2 +RA
'

' R1 +R2 +RA ' R1 +R2 ' 11 kΩ.

To calculate the loop gain, we will not have any load resistance RL and breaking
the loop at the output of the operation amplifier and applying a test signal to
the breaking point, we can obtain that since V2 is floating we will not have any
current flowing through the lower resistors R1 and R2, thus giving:

V + = 0.

In the upper part of the network, on the other hand:

V − = VS
R1

R1 +R2 +RA

that gives the following output voltage:

Vo = −A(s)
R1

R1 +R2 +RA
VS
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from which we obtain the following loop gain:

Gloop = −A(s)
R1

R1 +R2 +RA
' −A(s)

R1

R1 +R2
.

From this we can then obtain the impedance as:

Z =
R1 +R2

1 +A(s) R1

R1+R2

.

Alternatively, we could have used the Blackman’s formula for obtaining the
same result.
Last, we have to study the static precision of this network. Neglecting the resistor
RA since it is small, we can observe that the error between the ideal gain and
the one that we can obtain is equal to 1/Gloop. This means that the requirement
that we have formulated on the static precision of this network is equivalent to
the following one:

Gloop > 100.

Before starting all the calculations, we can observe that if RL is extremely small
we are compromising the behaviour of the loop, while if it tends to infinity it
will not give any problem; therefore, we expect to find a lower bound for the
load resistance. Cutting the loop at the output of the operation amplifier and
applying a test signal VS , we can immediately obtain that:

V + = VS
R1

R1 +R2 +RL
, V − = VS

R1

R1 +R2

and this gives:

Gloop = −A(s)

(
− R1

R1 +R2 +RL
+

R1

R1 +R2

)
=

= −A(s)R1
RL

(R1 +R2 +RL)(R1 +R2)

that can be evaluated in the following two limits:

Gloop −−−−−→
RL→∞

−A(s)R1, Gloop −−−−→
RL→0

0.

In static conditions, if the load resistance is small:

Gloop ' −A0
R1RL

(R1 +R2)2
> 100

and this gives:

RL > 100
(R1 +R2)2

R1A0
= 1.2 kΩ.

5.6 Noise transfer and OAs

5.6.1 Exercise 1

Given the circuit represented in Figure 5.77, where:

R1 = 1 kΩ, R2 = 100 kΩ, A0 = 120 dB, GBWP = 107 Hz
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Figure 5.77: Circuit considered.

with the following noise sources:√
Sv = 18 nV/

√
Hz,

√
Si = 10 pA/

√
Hz

discuss the noise transfer of this network, computing the output total noise.
Recognizing that this network is an inverting amplifier, we can write the ideal
gain of this network as:

G = −100.

Actually, then, we have many different noise sources that we need to take into
account. First of all, we have the noise sources associated to the thermal noise in
the resistors whose power spectral density is, for example for the first resistor:

Sv1 = 4kBTR1.

We can thus consider the noise as if it were a signal, finding the associated
transfer function and calculating then the associated square modulus. In this
case, considering the voltage equivalent noise source, the transfer function will
be:

Vo = −R2

R1
Vn

and therefore, considering the associated power spectral density:

Svo =

(
−R2

R1

)2

Sv = 104Sv.

Since we then want to compute the mean square value of the output noise:

V 2
o =

∫ +∞

0

Svo df

since in circuits we will always be dealing only with unilateral power spectral
densities. The problem, now, is that if we consider the constant power spectral
density at the input this integral is clearly diverging. In this case, this means
that we have to remove an approximation: the fact that we are dealing with the
ideal gain of the circuit, neglecting the fact that the operation amplifier is a real
one. The real operation amplifier, therefore, will include a pole and therefore
also the real gain will include this pole that will make the previous integral finite.



5.6. NOISE TRANSFER AND OAS 353

Since, by definition, the real gain is the minimum between the ideal gain and
the open-loop one, we can cut the loop at the output of the operation amplifier
and inject a test signal to the inverting pin of the operation amplifier, obtaining
the following open-loop gain:

Gol = −A(s)
R2

R1 +R2
' −A(s) = − A0

1 + sτ
.

10 fp

40

120

log(f)

Figure 5.78: Ideal gain (dashed and dotted line), open-loop gain (dashed line)
and real gain (solid line) for the circuit considered.

The pole in the real gain, then, will be place at:

fpGid = GBWP → fp =
GBWP

Gid
= 105 = 100 kHz

therefore we can write the noise transfer function as:

Vo = − 100

1 + sτc
Vn, τc =

1

2πfp
, fp = 100 kHz.

Alternatively, we could directly have calculated the loop gain and the associ-
ated crossover frequency fp. Squaring the modulus of this transfer function, we
obtain:

Svo =
104Sv

1 + (ωτc)2

and thus we obtain:

V 2
o =

∫ +∞

0

104Sv
1 + (ωτc)2

dω

2π
=

104Sv
2π

(
arctan(ωτc)|+∞0

)
=

= 104Sv
π

2
fp ' 2.6 · 10−8 V2

and this is the contribution of the first resistance R1.
For the second resistance, considering the circuit represented in Figure 5.79,

form an analogous reasoning we can observe that the ideal gain from this noise
source is unitary:

Gid = 1.

Also in this case, therefore, we have to compute the real gain of the network,
otherwise this result will diverge. Disconnecting the output and using the voltage
equivalent noise source as a test source, we can find the open-loop gain as:

Gol = − R1

R1 +R2
A(s) ' −R1

R2
A(s)
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−

+

R1

R2
Vn

Figure 5.79: Noise contribution for the second resistance.

and this can be represented in a Bode plot as in Figure 5.80.

fp

107

80

120

log(f)

Figure 5.80: Ideal gain (dashes and dots), open-loop gain (dashes), gain of the
OA (dots) and real gain (solid line) for the circuit considered.

As it is expected, also in this case the pole of the real gain is placed exactly
in the same position of the pole of the previous real gain; in fact, it identifies the
frequency at which the loop gain is unitary and we know that the loop gain is
independent from the position of the input considered. In this case, for example,
the loop gain will be:

Gloop = − R1

R1 +R2
A(s)

and thus the transfer function will be:

Vo =
Vn

1 + sτc
⇒ Svo =

Sv
|1 + sτc|2

.

Integrating this quantity we can get the mean square value of the output noise
associated to this noise source:

V 2
o =

∫ +∞

0

Svo df = Sv
π

2
fp = 2.6 · 10−10 V2.

Notice that there are two orders of magnitude between the two noise terms. In
particular, even though the two resistors are different by two order of magni-
tudes:

R1 = 10−2R2
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the noise terms will have an inverse ratio because of the amplification of the
thermal noise in resistor R1 with respect to the one coming from resistor R2.
The factor 102, therefore, will come from a 104 amplification multiplied by the
10−2 difference in the two input noise power spectral densities.

−

+

Vn

R1

R2

Figure 5.81: Noise equivalent voltage source for the noise in the operation am-
plifier.

To consider the noise equivalent voltage source for the operation amplifier
we need to study the circuit represented in Figure 5.81. In this case, we can
immediately see that the output voltage can be written as:

Vo =
R1 +R2

R1
Vn

and therefore computing the square modulus of this transfer function:

Svo =

(
R1 +R2

R1

)2

Sv.

Also in this case, this is a white power spectral density and therefore we need
to calculate the real gain in order to not have an infinite result. Also in this
case, from this computation we will obtain an additional pole placed at fp since
the loop gain of the network is always the same regardless of the position of the
input:

Svo =

(
R1+R2

R1

)2

|1 + sτc|2
Sv

thus obtaining the following expression for the mean square value of the output
noise:

V 2
o = Sv

(
R1 +R2

R1

)2
π

2
fp = 1.6 · 10−7 V2.

To consider the noise equivalent current sources, we have to study the two
networks represented in Figure 5.82. This noise equivalent current source can
be placed either at the positive input pin or at the negative input pin of the
amplifier. As we can clearly see from the Figure, the noise equivalent current
source placed at the positive input pin will not give any contribution to the
overall output noise due to the fact that the input impedance of the opera-
tion amplifier is infinite. Considering the noise equivalent current source at the
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−

+

In

R1

R2

−

+In

R1

R2

Figure 5.82: Noise equivalent current sources for the noise in the operation
amplifier.

negative input pin, the associated transfer function will be:

Vo = −R2In

and thus we obtain:

Svo = (−R2)2SI .

Also in this case the noise is white, therefore we have to consider the real transfer
function, that will be:

Svo =
R2

2

|1 + sτc|2
SI

thus giving the following mean square value of the output noise:

V 2
o =

∫ +∞

0

Svo df = SIR
2
2

π

2
fp ' 1.6 · 10−7 V2.

By linear superposition, since the noise processes are random processes and
they are uncorrelated one with respect to the other, we can sum the associated
variances, obtaining:

V 2
o = 2.6 · 10−8 + 2.6 · 10−10 + 1.6 · 10−7 + 1.6 · 10−7 ' 3.46 · 10−7 V2.

R

SV = 4kBTR

R

SI = 4kBT
R

Figure 5.83: Thermal noise equivalent sources.

Before ending this exercise, it is worthy to make a few considerations. First
of all, we can note that the thermal noise is a resistor can be represented, as in
Figure 5.83, either with its Thévenin equivalent (thus through a voltage source)
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I

I

I

Figure 5.84: Equivalence between circuits.

or through its Norton equivalent (thus using a current source). This depends on
our particular choice and the convenience in the circuit we are dealing with.

Considering now three different nodes in a generic network and a current
source that is connecting two of them, we can observe that we can draw an
equivalent scheme of the network as in Figure 5.84. This means that we can
break any current source as the series of two different current sources without
affecting any property of the network.

−

+

R1

SI1

R2

SI2

−

+SI,2b

R1

SI1
R2

SI,2a

Figure 5.85: Equivalent representation of the circuit considering the thermal
noise equivalent current sources in both the resistors.

We can now apply these properties as in Figure 5.85. In this drawing, we have
considered the thermal noise equivalent current sources for both the resistors
and we have split the source for the resistor R2 in two different source that
have, as a common pin, the ground. Applying the linear superposition, we can
first consider only the current source whose power spectral density has been
indicated with SI,2a and observe that the output will always remain a zero: it
will not give any contribution. Considering now the current source with power
spectral density SI,2b, we can see that it will be in parallel to the noise equivalent
current source for the thermal noise in resistor R1. We can then note that also
the noise equivalent current source for the negative input pin of the operation
amplifier will be in parallel to these sources, thus giving an equivalent circuit
that is represented in Figure 5.86.

From this representation, we can immediately obtain that:

Vo = (IT1
R2 + IT2

R2 + IOAR2)
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−

+SI,T2

R1

SI,T1 R2

SI,OA

Figure 5.86: Equivalent noise representation of the source for the thermal noise
in both the resistors and for the current equivalent noise source in the operation
amplifier.

from which comes:

Svo = SI,T1R
2
2 + SI,T2

R2
2 + SI,OAR

2
2 = (SI,T1

+ SI,T2
+ SI,OA)R2

2

where we have neglected the double products since the noise terms are uncor-
related one with the other.

5.6.2 Exercise 2

−

+

R1

Vn

R2

C

Figure 5.87: Circuit considered (where we have already considered the noise
equivalent voltage source for the thermal noise in the first resistor).

Consider the circuit represented in Figure 5.87, where:

R1 = 1 kΩ, R2 = 1 MΩ, C = 100 nF, A0 = 120 dB

GBWP = 10 MHz,
√
Sv = 100 nV/

√
Hz,

√
Si = 10 pA/

√
Hz

and evaluate the associated noise.
This circuit is an approximated integrator and the first noise term that can
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be studied is the thermal noise in the resistor R1. From the given circuit, the
associated transfer function will be:

Vo = −Vn
R2‖ 1

sC

R1
= −Vn

R2

R1
· 1

1 + sCR2

thus obtaining the following output power spectral density:

Svo = Sv

(
R2

R1

)2
1

|1 + sCR2|2
.

We can immediately note that, due to the presence of a capacitor, this power
spectral density has already a pole and, therefore, its integral will be finite. In
this case, therefore, we do not need to calculate the real gain of the circuit,
since it will only add another high-frequency pole, that will give only a small
correction to this calculation. Since we do not want to add useless complexity
to this already complex problem, we can evaluate the mean square value of the
output noise for the thermal noise in the resistor R1 as:

V 2
o = 4kBTR1 ·

(
R2

R1

)2
π

2

1

2πCR2
' 4 · 10−11 V2.

The same result could have been obtained by using a noise equivalent current
source, since the transfer function would have been:

Vo = −In ·
(
R2‖

1

sC

)
= −In

R2

1 + sCR2

and thus the output power spectral density:

Svo = Si
R2

2

|1 + sCR2|2
=

4kBT

R1
· R2

2

|1 + sCR2|2
.

−

+

R1

SI,T1

R2

C

SI,T2

−

+

Vn

R1

R2

C

Figure 5.88: On the left, noise equivalent current sources for the thermal noise
in R2; on the right, noise equivalent voltage source for the operation amplifier.

Considering now the thermal noise in R2 as in Figure 5.88, since the current
source whose power spectral density has been indicated with SI,T2 is not relevant
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(since it will not change the output voltage), we can focus only on the first power
spectral density, obtaining, as in the previous case:

SV o = SI,T1

R2
2

|1 + sCR2|2

and since its integral is again finite we do not have to consider the real gain of
the network, obtaining the following mean square value of the output:

V 2
o = SI,T2

π

2
R2

2fp =
4kBT

R2
R2

2

1

4CR2
' 4 · 10−14 V2.

For the current source of the amplifier, the only contributing term will be the
one connected to the negative input pin (since the positive one will see only the
infinite input impedance of the operation amplifier) and its contribution will be
formally identical (apart from the power spectral density) to the previous one:

V 2
o = SiR

2
2

1

4CR2
' 2.5 · 10−10 V2.

Last, for the noise equivalent voltage source for the operation amplifier, we can
write it as:

Vo = Vn

(
1 +

R1‖ 1
sC

R1

)
= Vn

(
1 +

R2

R1(1 + sCR2)

)
=

= Vn

(
R1 +R2 + sCR1R2

R1(1 + sCR2)

)
=
R1 +R2

R1

1 + sC(R1‖R2)

1 + sCR2
Vn

and evaluating that:

R1 +R2

R1
' 103, R1‖R2 ' R1

we could square this relationship and evaluate the output power spectral density.
However, since we have more than one singularity in this expression, this integral
is diverging. We need thus to consider the real gain, that will add an extra pole
at high frequency. We know, in fact, that the transfer function of the noise
source must always go to zero in the high frequency limit, otherwise leading to
an unphysical behaviour. We can evaluate the frequency of the additional pole
fc by computing it as the crossover frequency for the loop gain:

Gloop(fc) = 1

and therefore eliminating every source term from the network, cutting the loop
at the output of the operation amplifier and adding a voltage test source, we
can write it as:

Gloop = −A(s)
R1

R1 + R2

1+sCR2

= −A(s)
R1(1 + sCR2)

R1 +R2 + sCR1R2

and since we are way above the position of the pole and of the zero, we can say
that the crossover frequency will be at:

fc = GBWP.
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10
1

2πCR2

1
2πCR1R2

fc

fp1

fz fp2

G1

Figure 5.89: On the left, Bode diagram of the loop transfer function; on the
right, Bode diagram of the real gain and its representation as piecewise single-
pole transfer functions.

The real gain transfer function can thus be evaluated as in Figure 5.89 and
approximating it with the area underlying the constant parts15, we can write
the mean square value of the output noise as:

V 2
o = SvG

2
1

π

2
fp1 + Sv1

2π

2
(fp2 − fz)

where this approximation holds if the poles and the zeros are well separated
one from the other. In this case, therefore, the mean square value of the output
noise will be:

V 2
o = 2.5 · 10−8 + 1.5 · 10−7 = 1.75 · 10−7 V2.

The final mean square value of the output noise can then be written as the sum
of all the previous different contributions:

V 2
o = 4.1 ·10−11 +4.1 ·10−14 +2.5 ·10−10 +2.5 ·10−8 +1.5 ·10−7 ' 1.75 ·10−7 V2.

The root mean square value of the output noise, then, will be:√
V 2
o ' 425 µV.

5.6.3 Exercise 3

This exercise comes from the exam of July 20th, 2010. Considering the network
represented in Figure 5.90, where:

A0 = 106, GBWP = 1 MHz, G = 100, R = 10 Ω, RL ≤ 1 kΩ

calculate the ideal gain, the loop gain and discuss the stability of the network.
Then calculate the output impedance of the network.
From a direct inspection of this network, we can immediately write that:

V − = Vi
15Remember that any time you study the area underlying a transfer function you can

approximate it with its flat parts, considering them just as if they were single-pole portions.
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Figure 5.90: Representation of the circuit considered.

and therefore:

Vi = GI0R → I0 =
Vi
GR

.

This gives that the ideal gain is:

Gid =
1

GR
=

1

100R
= 10−3 Ω−1.

To compute the loop gain, we can cut the loop at the output of the operation
amplifier and apply, to the same node, a test voltage source VS . In this case,
again investigating the network, we obtain that:

V − = G
R

R+RL
VS

from which the output voltage:

Vo = −A(s)
R

R+RL
GVS

that gives the following loop gain:

Gloop = −A(s)
R

R+RL
G = −A(s)

100R

R+RL
.

For the stability, the operation amplifier A(s) has one pole while the other term
is constant, therefore the system is expected to be stable with a phase margin of
90◦. However, since we have a range of values in which we can select the output
resistance:

RL ∈ [0, 1] kΩ

we can evaluate the loop gain for these two extreme values:

RL = 1 kΩ : Gloop ' −A(s), RL = 0 : Gloop ' −100A(s)

and in both cases the system will be stable. However, from the gain-bandwidth
product of the operation amplifier:

GBWP = 1 MHz
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we can immediately see that if the loop gain is higher (as in the case RL = 0)
we can move the crossover frequency at a much higher frequency, as it can be
represented in a suitable Bode diagram. From the theory of the dominant pole
compensation, we know that above the gain-bandwidth product of an operation
amplifier we will have a lot of other poles whose contribution is, in general,
not relevant. However, if the loop gain is too high, we are actually moving the
crossover frequency in higher frequency regions and this will possibly lead an
unstable system, since one or more of these poles can come into play. We are
actually making the leading pole compensation not effective. As a general rule,
the crossover frequency of the loop gain should not exceed the gain-bandwidth
product of the operation amplifier. In principle, in fact, this network seems to
be stable, but nobody knows what is happening above the dominant pole of the
operation amplifier.

Figure 5.91: On the left, circuit needed for the computation of the open-loop
impedance; on the right, compensated circuit.

For the computation of the output impedance, the first thing that we can
immediately do is to replace the load resistance RL, that will not be part of the
network, with a test source. Since this device is, actually, a current source, we
expect to have, in an ideal case, an infinite output impedance, therefore we can
try first to apply a voltage test source. In the ideal case, the two pins of the
operation amplifier will be at the same voltage and equal to zero, therefore the
two input pins of the gain stage will be at the same voltage and thus there will
not be any current flowing through the resistor R. Since we cannot neither have
a current flowing through the input pins of the gain stage (that being an ideal
stage has an infinite output impedance), we conclude that in the ideal case:

IS = 0

and thus that the ideal output impedance is equal to:

Zid =∞.

This means that the closed-loop output impedance will be written in the fol-
lowing form:

Z = Zol(1−Gloop)
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where the loop gain has to be calculated without the load resistance RL. To
compute the open-loop impedance, we can cut the loop at the output of the
operation amplifier and observe that the only resistance seen from the voltage
test source is:

Zol = R.

For the computation of the loop gain, we can replace this test source with a
short-circuit to the ground and cutting the loop and applying a test voltage
source in the direction of the loop we obtain that:

V − = VS → Vo = −GA(s)VS → Gloop = −GA(s).

This means that we can write the closed-loop output impedance as:

Z = R(1 +GA(s))

and, at zero frequency, it will be equal to:

Z = 10(1 + 102 · 106) = 1 GΩ.

Alternatively, we could have used the Blackman’s formula, where the short-
circuit loop gain is the one that we have just calculated:

Gloop|sc = −GA(s)

while the open circuit loop gain can be compute leaving the pin at which we
have RL floating, obtaining:

Gloop|oc = 0

since we cannot have any current flowing through RS and thus the output of
the gain stage is zero. This formula, therefore, would have lead to exactly the
same result of the previous one.
We can now introduce an additional pole in the gain G, that will now have the
following gain-bandwidth product:

GBWP ′ = 50 MHz.

We want now to discuss the stability and, eventually, compensate this circuit.
As in the previous case, the loop gain can be written as:

Gloop(s) = −A(s)G(s)
R

R+RL

but now the gain is itself a single-pole transfer function:

G(s) =
100

1 + sτg
, fg =

1

2πτg
= 500 kHz.

We can immediately observe, from the position of this pole that it will be at a
lower frequency with respect to the crossover frequency that we obtained in the
previous, ideal gain case, thus affecting the stability of the circuit. Representing
in a suitable Bode diagram for both the limiting case ofRL this transfer function,
we can obtain that in the case in which RL = 1 kΩ = RL,max the phase margin
is decreased until φm ' 35◦, while in the case in which the load resistor is
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identically equal to zero it is even worse than this. We need thus to find a way
to compensate this circuit.
The simplest idea, in this case, could be to add a capacitor in parallel to one
of the elements that are present, for example R or RL. Putting it in parallel
to R we will not compensate the circuit, since it will only add a pole, thus
resulting not effective (and, on the other hand, worsening the phase margin),
while putting it in parallel to RL is also useless. Another idea, then, could be
to put the capacitor in the feedback loop, thus somehow resulting in parallel
to the gain stage. However, in this way we are not changing any voltage of the
network in the steady-state case, therefore we have to add also a resistor R1

that can be placed as in Figure 5.91. In this case, the output of the gain stage,
whose voltage we can call Vout,g, can be calculated (in the computation of the
loop gain, that is the quantity relevant for the stability) to be equal to:

Vout,g = VS
R

R+RL
G(s).

In this way, we have reduced to the equivalent circuit represented in Figure 5.92.

C1

VS

R1

Vout,g

V −

Figure 5.92: Equivalent circuit that we have to solve.

In this case, we can compute the voltage at the negative input pin of the
operation amplifier as:

V − = VSG(s)
R

R+RL

1

1 + sC1R1
+ VS

sC1R1

1 + sC1R1
=

=
VS

1 + sC1R1

(
100

1 + sτg

R

R+RL
+ sC1R1

)
=

=
VS

1 + sC1R1
· K + sC1R1 + s2C1R1τg

1 + sτg

where we have defined:

K = 100
R

R+RL
.

We can thus write the loop gain as:

Gloop = − A0

1 + sτ
· K + sC1R1 + s2C1R1τg

(1 + sτg)(1 + sC1R1)

where we have that:
K ∝ RL, K ∈ [1, 100] .
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We can immediately determine the position of the three poles:

fp0 = 1 Hz, fp1 =
1

2πC1R1
, fpg = fp2 = 500 kHz

and of the two zeros in an approximate way:

fz1 '
K

2πC1R1
, fz2 '

C1R1

C1R1τg2π
' 1

2πτg
= fpg

thus obtaining a cancellation. We are thus left only with one zero and two poles.
When we have that:

K = 1 → RL = RL,max

we have another pole-zero cancellation:

fp1 = fz1

and thus the closed-loop compensated system that we have obtained is clearly
asymptotically stable. On the other hand, when we have that:

K = 100 → RL = 0

we need to further study the behaviour of the loop gain as in Figure 5.93.

KA0

G1

G2

1 fp1 fz

fc log(f)

|Gloop|dB

Figure 5.93: Bode diagram of the loop gain for K = 100.

We need now to have both fp1 and fz to be before the frequency identified
by the gain-bandwidth product. Since we have that:

KA0fp0 = G1fp1, G1f
2
p1 = G2f

2
p2

we can write this second gain as:

G2 = G1fp1
fp1
f2
p2

= KA0fp0
fp1
f2
z

= KA0fp0
fp1

K2f2
p1

=
A0fp0
Kfp1

and thus the crossover frequency will be:

fc = G2fz = Kfp1G2 = A0fp0 = GBWP.

Alternatively, we could have taken the second pole and brought it to the right of
the crossover frequency. From the Bode plot of the magnitude of the loop gain
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−46 dB

log(f)

|Gloop|dB

160

114

Figure 5.94: Bode diagram of the loop gain for different values of K.

that is represented in Figure 5.94, it means that we have to reduce the loop gain
of a factor 200, that is equal to 46 dB.

This decrement can be easily obtained, considering the circuit that is repre-
sented in Figure 5.90, by adding a compensation resistor between the positive
input pin of the gain stage and the output of the operation amplifier. In the
computation of the loop gain, this will involve a partition for computing the
voltage across the resistor R, therefore we have to set:

RC = 200R.

This solution will always work, but it is only the last resource when we are
not able to compensate the circuit in any other way, since it has two important
drawbacks. First of all, a decrease in the loop gain corresponds to an increment of
the error, that is in general bad (even though, in this case, we are not excessively
decreasing it). Second, it will limit the dynamic of the circuit. In fact, if we
assume to have a zero compensator resistor, the maximum current that can
flow in the circuit will be:

RC = 0 → I0,max =
Vi
R

=
10 V

10 Ω
= 1 A

while if we are using a compensation resistance:

RC = 200R = 200 kΩ → I0,max =
Vi
RC

= 5 mA

therefore the maximum value of the current that can come from the same input
is much lower. We can now compute the total output power spectral density for
the noise as the following sum:

Sio = Sv
1

G2R2
+ Sv

1

R2
+ 0 + Si +

4kBT

R
= 4 · 10−18 A2/Hz

where in the order we have considered the noise equivalent voltage source for the
operation amplifier, the noise equivalent voltage source for the gain stage, the
noise equivalent current source for the operation amplifier, the noise equivalent
current source for the gain stage and, last, the thermal noise in the resistor R.
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5.7 Signal conditioning

5.7.1 Exercise 1

Figure 5.95: Signal considered.

This exercise comes from the exam of February 25th, 2011. Consider the
signal represented with a solid line in Figure 5.95:

Tp = 100 µs,
√
Sv = 20 nV/

√
Hz

and evaluate the output of a low-pass filter with the following characteristics:

R = 1 kΩ, C = 100 nF

and of a gated integrator with a suitable integration time Tg.
First of all, we have to remember that since we are dealing with a real signal
then Sv is a unilateral power spectral density and thus we want to find the
minimum detectable signal A that we can detect at the output of the low-pass
filter. By definition, the minimum detectable signal is the one for which we can
have the following signal-to-noise ratio:(

S

N

)
out

= 1.

From the circuit of the low-pass filter, we can calculate the time constant of this
filter as:

RC = 10−4 = 100 µs = Tp

and observe that it is equal to the duration of the pulse. Since the input is not
constant, we have to explicitly compute the output signal as:

y =

∫
x(τ)h(t− τ) dτ

where the signal can be written as:

x(τ) =

{
Aτ
Tp
, 0 < τ < Tp

0, elsewhere
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while the response of the filter can be written as:

h(t− τ) =
1

RC
e−

t−τ
RC .

Computing this convolution:

y(t) =
A

Tp

∫ t

0

τ

RC
e−

t−τ
RC dτ =

A

Tp
e−

t
RC

∫ t

0

τ

RC
e
τ
RC dτ =

=
A

Tp
e−

t
RC

[(
τe

τ
RC

∣∣t
0

)
−
∫ τ

0

e
τ
RC dτ

]
=

=
A

Tp
e−

t
RC

[
te

t
RC −

(
RCe

τ
RC

∣∣t
0

)]
=

=
A

Tp
e−

t
RC

[
(t− Tp)e

t
RC +RC

]
= A

t− Tp
Tp

+Ae−
t
RC =

= A

(
t

Tp
− 1 + e−

t
RC

)
.

This is the standard way of computing the output signal. Alternatively, we could
have considered the step response of this filter and, since the input signal, being
a ramp, is the integral of the step, the response of the filter to the input is the
integral of the step response of the filter:∫ t

0

A

Tp

(
1− e− t′

RC

)
dt′

after having suitably rescaled it. After the end of the signal, then, the capacitor
will start to discharge, thus giving an exponentially decaying behaviour. The
maximum amplitude is thus obtained at:

y(Tp) = yM

thus giving the following signal-to-noise ratio:(
S

N

)
out

=
y(Tp)√
n2
y

.

From the expression of the output of the filter, we can write:

y(Tp) = Ae−1 =
A

e
, Tp = RC

and we need thus to calculate the mean square value of the low-pass filter, that
from the theory can be written as:

n2
y =

π

2
Sxfp =

π

2
Sx

1

2πCR
=

Sv
4RC

= (1 µV)
2
.

Imposing the requirement on the signal-to-noise ratio:(
S

N

)
out

= 1 → A

e
=

√
Sv

4RC
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and we obtain that:

A = e

√
Sv

4RC
= 2.7 µV

is the minimum amplitude required for the signal.
It is important to notice that another possible source of noise is the resistance
R of the low-pass filter, therefore we need to make sure that the input noise is
the dominating source of noise in this device:√

4kBTR = 4 nV/
√

Hz�
√
Sv

and thus we can neglect it.
Considering now a gated integrator, we need to define the start and the stop of
the window over which we are integrating. Obviously, there is not any sense in
extending the window beyond the end of the signal. A possible choice is to take
t = 0 as the start of the integrating window and t = Tp as the end, but since
we are asked to optimize the signal-to-noise ratio we need to further study it.
A first possible choice is to start from zero and end at:

Tg < Tp.

An even better choice, however, for the same size of the window, is to put it
where the signal is stronger, thus starting at Tp − Tg and ending at Tp. In fact,
in both cases we are collecting the same amount of noise, therefore we want to
maximize the signal collected.
The output signal, therefore, will be:

y(t) =

∫
x(τ)w(t, τ) dτ = G

∫ Tp

Tp−Tg

At

Tp
dt =

=
GA

Tp

∫ Tp

Tp−Tg
t dt =

GA

2Tp

[
T 2
p − (Tp − Tg)2

]
=

=
GA

2Tp
Tg(Tp − Tg).

From the theory on the gated integrator, we know that the mean square value
of the output noise can be written as:

n2
y = λG2Tg

where λ is the bilateral power spectral density. Since in this case it is given the
unilateral power spectral density, the two can be related by writing:

λ =
Sv
2

and therefore the mean square value of the output noise can be written as:

n2
y =

Sv
2
G2Tg = λ

∫
|W (t, f)|2 df = λ (GTg)

1

Tg

where we have considered that:

|W (t, f)|2 = (GTg)
2

sinc2(πfTg).
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From this value, we can calculate the signal-to-noise ratio:(
S

N

)
out

=

GA
2Tg

(2TpTg − T 2
g )√

Sv
2 TgG

2
=

A

2Tg

√
2

Sv

2TpTg − T 2
g√

Tg

where we can immediately see that, as expected, any constant gain is cancelled.
Maximizing this quantity with respect to the integration time Tg, we can obtain:

∂

∂Tg

(
2TpTg − T 2

g√
Tg

)
= 0 → d

dTg

(
2Tp
√
Tg − (Tg)

3
2

)
=

2Tp

2
√
Tg
− 3

2

√
Tg = 0

that gives:

Tg =
2

3
Tp.

This is a well-known result for the gated integrator. Replacing it in the signal-
to-noise ratio, we can set it equal to one:(

S

N

)
out

=
3A

4Tp

√
2

Sv

4
3T

2
p − 4

9T
2
p√

2
3To

= 1

we obtain the minimum amplitude for the signal to be measurable:

A ' 2.6 µ V.

Notice that this value is quite similar to the previous result that we have ob-
tained for a low-pass filter.
At this point, we can consider the signal that is represented as a dashed line in
Figure 5.95 and repeat the same calculation for the low-pass filter and for the
gated integrator.
Starting from the case of the gated integrator, the signal-to-noise ratio will be
exactly the same if we place the integration window from time t = 0 to:

Tg =
2

3
Tp.

In the case of the low-pass filter, on the other hand, we need to repeat the
computation of the integral that leads to the solution. The output signal, in
this case, will be:

y(t) =

∫
x(τ)h(t− τ) dτ =

∫ t

0

x(τ)
1

RC
e−

t−τ
RC dτ =

=

∫ t

0

A

(
1− τ

Tp

)
1

RC
e−

t−τ
RC dτ = e−

t
RC

A

RC

∫ t

0

(
1− τ

Tp

)
e
τ
RC dτ =

= Ae−
t
RC

(∫ t

0

1

RC
e
τ
RC dτ −

∫ t

0

τ

Tp

1

RC
e
τ
RC dτ

)
and considering that the second integral has already been calculated, we can
solve only the first one, at the end obtaining:

y(t) = A

(
2− 2e−

t
RC − t

Tp

)
.
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Since in the signal-to-noise ratio we want to find the maximum amplitude for
this signal, we can set:

dy(t)

dt
= 0 → 2

RC
e−

t
RC − 1

Tp
= 0

obtaining the time instant at which it is maximum:

e−
t
RC =

1

2
→ t = RC log(2).

This means that the maximum signal will be:

y(t) = A
(

2− 2e− log(2) − log(2)
)

= A (1− log(2))

thus giving, since the mean square value of the output noise will be of the form
of the previously computed one, the following signal-to-noise ratio:(

S

N

)
=
A (1− log(2))√

Sv
4RC

= 1

that gives the following minimum amplitude:

A = 3.25 µV.

This value is higher than the previous one, therefore this signal acquisition is
worse than the previous case.

5.7.2 Exercise 2

Figure 5.96: Signal considered.

Given the signal, defined as the portion of a sinusoid of amplitude A, repre-
sented in Figure 5.96, where16:

A = 10 mV, λ = 10−12 V2/Hz

compute the signal-to-noise ratio at the output of a gated integrator keeping in
mind that the following equation holds:

tan(x) = 2x → x ' 1.1655.

16Remember that λ is the bilateral power spectral density of the signal.
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In this case, a possible choice is to set the integration interval symmetrically with
respect to the peak of the signal considered. Changing the reference system in
order to have the time instant t = 0 exactly in the position of the maximum
of the signal, we can consider a gate that is extending from −Tg to Tg, thus
obtaining an output signal equal to:

y(t) =

∫
x(τ)w(t, τ) dτ = G

∫ Tg

−Tg
A cos

(
πt

t0

)
dt =

= A
Gt0
π

sin

(
πt

t0

)∣∣∣∣Tg
−Tg

=
2AGt0
π

sin

(
πTg
t0

)
where we have defined t0 as the pulse duration in the original time reference
system. From the theory of the gated integrator, the mean square value of the
output noise can be written as:

n2
y = λG2(2Tg)

and therefore the signal-to-noise ratio at the output of this filter can be written
as:

S

N
=

2A�Gt0
π

sin

(
πTg
t0

)
1

�G
√

2λTg
=
A
√

2t0

π
√
λ
·

sin
(
πTg
t0

)
√

πTg
t0

·
√
π

t0
=

= A

√
2t0
πλ
· sin(x)√

x

where we have defined:

x =
πTg
t0

.

Optimizing the size of the gate in order to have the maximum possible signal-
to-noise ratio:

∂

∂Tg

(
S

N

)
= 0 → ∂

∂x

(
S

N

)
= 0

and we get:
cos(x)

√
x− sin(x) 1

2
√
x

x
= 0 → tan(x) = 2x

that can be solved, from the hint, as:

x = 1.1655 =
πTg
t0

.

This gives a signal-to-noise ratio of:

S

N
' 6.8.

5.7.3 Exercise 3

Considering again the signal and the situation considered in the first exercise,
assume now that the triangular waveform is part of a repetitive signal x(t) with
a repetition frequency of:

frep = 100 Hz.
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The amplitude A of this triangular signal can be considered as constant over a
time interval of 5 s; find a filter to improve its signal-to-noise ratio can adjust
its parameters in order to obtain the best performance.
Since we are dealing with a repetitive series of pulses, we can use as a filter
a boxcar averager. In this case, the signal-to-noise ratio at the output of the
boxcar can be related to the signal-to-noise ratio of the single pulse (denoted
by the subscript sp) by the following formula:(

S

N

)
BA

=

(
S

N

)
sp

·
√
Neq

where we have defined the number of equivalent pulses as:

Neq =
2TF
TC

.

In general, we can hopefully assume that:

TF � TC

and this hypothesis will allow us to neglect the exponential discharge of the
capacitor, thus significantly simplifying the calculations. For each single pulse,
therefore, the weighting function can be approximated with the weighting func-
tion of a gated integrator and, therefore, from the first exercise, we can assume
again the duration of each gate to be equal to the size that we determined
imposing the maximization of the single-pulse signal-to-noise ratio:

TC =
2

3
Tp ' 67 µs.

Notice now that the time TF must be large but not too large, since we want to
maintain the amplitude of the rectangular signal A to be constant; this means
that we have to perform the whole measurement in a time that is smaller than
5 s. Using an equivalent time description of the boxcar averager, we can obtain
a new weighting function that is equivalent, both from the viewpoint of the
noise and of the signal, to the correct one. Assuming this exponential (that is
the equivalent time weighting function) to be completely finished after five time
constants, this means that the measurement will last for 5TF , that must be
smaller than 5 s in the real time representation. In this time interval, we can
study in the real time representation the following number of pulses:

5 s · 100 Hz = 500 pulses

and therefore in the equivalent time representation we will have 500 piecewise
exponential integration intervals with a duration equal to TC :

500TC = 5TF → TF = 100TC = 6.7 µs.

This is therefore the time constant that is needed for satisfying this requirement.
The number of equivalent pulses therefore will be:

Neq =
2TF
TC
' 200

and thus we will improve the previously calculated single-pulse signal-to-noise
ratio (that will come from the calculation for the gated integrator) of a factor√
Neq.
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5.7.4 Exercise 4

Figure 5.97: Signal considered.

It is given the square wave repetitive signal represented in Figure 5.97, where:

TH = TL = 1 µs, VA ' 10 µV,
√
Sv = 50 nV/

√
Hz, S/N = 10.

Propose a way of measuring the square wave signal VA superimposed over an
unknown offset signal VB using only boxcar averagers. Find then all the relevant
parameters for this experiment and calculate the equivalent number of samples
Neq.
Quite intuitively, it is not possible to use only one boxcar averager to measure
the signal VA. We need thus to use two differently synchronized boxcar averagers,
one measuring the periods of length TH in which the signal is at the high level
and the other measuring the signal during the periods of length TL in which it
is at the low level. Notice that, in this way, one boxcar averager is measuring a
signal proportional to VA+VB , while the other is measuring a signal proportional
to VB . Calculating, using a suitable electronic circuit, the difference between
these two signals, we can obtain the desired signal VA.

BA1

BA2

tH

tL

in

in

out

V1

V2

−

Figure 5.98: The proposed scheme for this measurement.

In this case, the weighting function for these two boxcar averagers will be
made of windows each one with a width of TL or TH depending on the boxcar
averager considered17, in order to obtain the maximum signal. In the equivalent
time representation for the first boxcar averager, we obtain a signal that is
proportional to VA+VB and the weighting function can be considered equivalent

17From a practical point of view, however, they are equal.



376 CHAPTER 5. EXERCISES

to the one of a low-pass filter, allowing us to calculate the output signal and the
mean square value of the output noise:

V1 = VA + VB , n2
1 =

Sv
4TF

where we have indicated with TF the equivalent time constant of the filter.
Analogously, at the output of the second boxcar averager we have that:

V2 = VB , n2
2 =

Sv
4TF

since the noise will be the same at the two different inputs and where we have
assumed both the filters to have the same equivalent time constant. At the
output of the whole device, then, we will have:

Vo = V1 − V2 = VA + VB − VB = VA

from the viewpoint of the signal, while for the noise:

n2
o = n2

1 + n2
2 =

Sv
4TF

where we have considered that the variances of uncorrelated18 stochastic pro-
cesses adds up. Imposing the required value for the signal-to-noise ratio:

S

N
=

VA√
Sv

4TF

= 10 → TF = 1.25 ms.

At this point, we can consider VB to be a sinusoidal interference at frequency
3f0, where f0 is the frequency of the square wave signal:

3f0 = 1.5 MHz.

How is it possible to improve this acquisition?
In this case, the signal VB can be written as:

VB = VB0 sin(3ω0t+ φ)

and it will be integrated over a time window TC . In this case, the output signal
can be written as:

Vo =

∫ TH

0

1

TF
VB0 sin(3ω0t+ φ) dt =

VB0

TF 3ω0
cos(3ω0t+ φ)|0TH =

=
VB0

TF 3ω0
[cos(φ)− cos(3ω0TH + φ)]

but since we have that:
ω0TH = π

we obtain the following output signal:

Vo =
VB0

3ω0TF
[cos(φ)− cos(3π + φ)] =

VB0

3ω0TF
[cos(φ)− cos(π + φ)] =

=
VB0

3ω0TF
2 cos(φ) =

2VB0

3ω0TF
cos(φ).

18Since we have assumed the input noise to be white.
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The output signal is thus proportional to a cosine function that depends on the
initial phase φ of the disturbance. In the worst case:

φ = 0 → Vo =
2VB0

3ω0TF
.

Notice that we cannot always cancel out this noise in two consecutive measure-
ments: on the first window corresponding to TH we will have a period and a half
of the disturbance obtaining a positive contribution, while in the other window
corresponding to TL it will have a negative contribution. Taking the difference
of these two signals, at the end, we are summing up the different sinusoidal
contributions, thus increasing the noise at the end of the two boxcar averagers.
At the end, this results in a noise equal to:

Vo =
4VB0

3ω0TF

that is twice the value of the previous result. Studying the weighting function
of the boxcar averager, we can see that the contributions corresponding to each
different pulse will give the same amount of noise with the same phase to the
total noise due to the fact that the frequency of the interference is an integer
multiple of the f0. However, these contributions will have a decaying amplitude,
therefore we can write them as a series:

4VB0

3ω0TF

(
1 + e

−THTF + e
−2

TH
TF + . . .

)
=

4VB0

3ω0TF

∞∑
n=0

(
e
−THTF

)n
=

=
4VB0

3TFω0

1

1− e−
TH
TF

' 4VB0

3TFω0

TF
TH

=
4VB0

3THω0
=

4VB0

3π
.

To get rid of this disturbance, we can set the integration time for a single pulse
(that was previously equal to TH = TL) to an integer multiple of the period of
the sinusoidal disturbance. In frequencies, this means to set to zero the sinc2

function that is within the square modulus of the Fourier transform of the
weighting function |W (t, f)|2 in the position corresponding to the frequency of
the disturbance. This will slightly reduce the signal but for sure it will completely
cancel out the disturbance.

5.7.5 Exercise 5

This exercise comes from the exam of September 5th, 2011. Consider a rectan-
gular signal with amplitude A and duration T to which it is superimposed a
white noise with given power spectral density:

A ' 5 µV, T = 100 µs,
√
Sv = 40 nV/

√
Hz

that is at the input of a buffer stage with unitary gain presenting a pole at the
following frequency:

fp = 100 KHz.

Compute the signal-to-noise ratio at the output of the buffer stage and the
improvement deriving from the use of a gated integrator.
The bandwidth of this rectangular signal can be evaluated as:

BW ' 1

T
' 10 KHz
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and therefore it will not be affected by the fact that the bandwidth of the
amplifier is limited. This means that, at the output of the buffer stage, the
signal-to-noise ratio can be written as:

S

N
=

A√
Sv

π
2 fp
' 0.32.

Adding a gated integrator at the output of the buffer stage, we are actually
integrating over the whole rectangular signal, thus having a size of the gate
equal to:

Tg = T = 100 µs.

In this case, from our previous theoretical description of the gated integrator,
we can write the signal-to-noise ratio at the output of this filter as:

S

N
=

GATg√
Sv
2 G

2Tg

=
ATg√
SvTg2

= A

√
2Tg
Sv

= 1.77.

We have thus improved the signal-to-noise ratio of a factor that is proportional
to the ratio between the bandwidth of the noise at the input and the noise
bandwidth of the gated integrator. At the input, the noise bandwidth can be
evaluated by writing:

fn =
π

2
fp = 157 kHz

while the noise bandwidth of the gated integrator is equal to:

BWn =
1

2Tg
= 5 kHz

and thus the signal-to-noise ratio can be written as:(
S

N

)
out

=

(
S

N

)
in

√
fn
BWn

.

This obviously holds when the noise can be assumed to be white, as in this
case, where the bandwidth of the noise is much larger than the bandwidth of
the filter; if this were not the case, we would need to take into account also the
correlation function.

Figure 5.99: Filter considered.
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Assume now to have a repetitive signal that is given by the periodic repeti-
tion of the previous rectangular signal with a duration of TC and at a distance,
in time, equal to TA:

TA = 5 ms, TC = 0.1 ms.

This signal is assumed to be at the input of the filter represented in Figure 5.99,
that is clearly a boxcar averager. We are asked to find the value of the resistor
R and of the capacitor C such that the signal-to-noise ratio is equal to:

S/N = 10.

Remembering the value of the signal-to-noise ratio that we have obtained at the
input of the device and in the gated integrator:(

S

N

)
in

= 0.32,

(
S

N

)
GI

= 1.77

since the behaviour of the boxcar averager for a single pulse is exactly identical
to the one of a gated integrator, we can write:(

S

N

)
BA

=

(
S

N

)
GI

√
Neq

and from the requirement on the signal-to-noise ratio we can calculate the equiv-
alent number of samples required:

Neq ' 32.

However, from the definition of this parameter:

Neq =
2TF
TC

→ TF =
TCNeq

2
= 1.6 ms

and thus we obtain:
RC = 1.6 ms.

At this point, we can choose among various possible reasonable values of R and
C such that the thermal noise on the resistor R is negligible with respect to the
given noise source:

4kBTR� Sv ⇒ R� 96 kΩ

and we can for example choose:

R = 10 kΩ.

We can now assume this second buffer to have a finite input impedance equal
to:

Rin = 1 MΩ

and we want to calculate what is changing in the behaviour of the circuit with
respect to the noise in this situation. When the switch is closed, the filter is
completely identical to a low-pass filter with the following time constant:

TF = C · (R‖Rin)
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and we can thus write the transfer function of this filter as:

Rin
R+Rin

· 1

1 + sC (R‖Rin)
' 1

1 + sCR

thus obtaining that almost nothing changes. When the switch is open, on the
other hand, we can immediately observe that the capacitor is discharging over
this finite input impedance Rin. This means that now the weighting function
can be described as the product between a series of rectangles (that are defining
the integration windows) and a truly exponentially decaying behaviour. Notice
that, when the switch is closed, this exponentially decaying behaviour will have
the following time constant:

TF = RC

while when the switch is open (thus, outside the rectangles) the time constant
will be different:

T ′F = RinC.

This means that this circuit is not a ratemeter, due to the fact that the time
constant of the open-switch sections is much larger than the closed-switch ones.
Again, neglecting the discharge over one single rectangle:

TC � TF

we can obtain that the amplitude of the various piecewise constant parts of this
exponentially decaying weighting function. At the end, therefore, the output
signal will be proportional to the following sum:

∞∑
n=0

[
e
−
(
TC
TF

+
TO
T ′
F

)]n
=

∞∑
n=0

[
e
−
(
TC
RC+

TO
RinC

)]n
=

=
1

1− e−
(
TC
RC+

TO
RinC

) ' 1

1− 1 + TC
RC + TO

RinC

=

=
1

TC
RC + TO

RinC

=
RC

TC + TO
R
Rin

=
TF

TC + TO
R
Rin

.

If the input impedance, as in the ideal case, tends to infinity:

Rin →∞ :

∞∑
n=0

[
e
−
(
TC
TF

+
TO
T ′
F

)]n
→ TF

TC

as in the previous case, while if:

Rin = R :

∞∑
n=0

[
e
−
(
TC
TF

+
TO
T ′
F

)]n
=

TF
TC + TO

as in the ratemeter. In our case:

R

Rin
=

1

100

and therefore the equivalent number of samples Neq is smaller, but not exces-
sively small as in the case of the ratemeter, thus decreasing the signal-to-noise
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ratio. In order to obtain again the same signal-to-noise ratio as before, we need
to impose the following time constant for the filter:

TF = 2.4 ms.

At this point, we can consider also the presence of the bias currents of the buffer:

IB = 2.5 pA

and evaluate its impact, finding the value of the resistor R that is needed to
limit the error to the 10% of the correct value.
When the switch is closed, the signal is constant and thus we are integrating it,
charging the capacitor. On the other hand, when the switch is open, the current
will tend to discharge this capacitor. In steady-state conditions, the charging
due to the signal when the switch is closed is equal to the discharging due to
the bias current when the switch is open. The average value of this periodic
behaviour, therefore, must be 10% smaller than the desired steady-state value.
When the switch is closed, thus during TC , the output voltage is exponentially
increasing:

Vo = A
(

1− e− t
RC

)
and in order to obtain a linear approximation of this curve we can calculate the
first derivative:

dVo
dt

=
A

RC
e−

t
RC .

Since this approximation must hold near to the steady-state value of the output
(that was A when we neglected the presence of the bias current), we can write an
approximation in steady-state condition of the behaviour of the output voltage
as:

Vo = A−Ae− t
RC .

We can thus write the derivative as:

dVo
dt

=
A− Vo
RC

and therefore the variation of the output voltage over a time TC must be equal
to:

∆Vo =
dVo
dt
· TC =

A− Vo
RC

TC .

Now, since we have a bias current IB flowing through the capacitor, the variation
of the voltage of the capacitor during the time interval in which the switch is
open will be:

∆Vo =
IB
C
TO

and at the equilibrium the two variations will be equal one to the other:

A− Vo
RC

TC =
IB
C
TO.

Notice that in this relation we can simplify the capacitance C, since this param-
eter will affect both the charge and the discharge of the device. We have thus
obtained the following condition

R =
A− Vo
IB

TC
TO
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but since we want an error lower than or equal to the 10% of the correct value:

A− Vo ≤ 10% ·A

we can write this requirement as:

R ≤ 0.1
TC
TO

A

IB
= 4 kΩ.

This means that we must decrease the value of R to increase the charging current
and thus to decrease the time in which the capacitor is charged.
It is important to notice that in this theory we have completely neglected the
effect of the bias current IB during the charge of the capacitor. What is the
error that we are committing with this assumption? The willing student can try
to calculate it.

5.8 Optimum filtering

5.8.1 Exercise 1

This exercise comes from the exam of June 29th, 2009. Considering the signal
represented in Figure 5.96 at page 372, where:

A ' 10 mV, λ = 10−12 V2/Hz

we have obtained, from the previous points:(
S

N

)
GI

= 6.8.

Assuming that this signal can be represented as:

x(t) = A sin(ωt)

for the case of white noise, the associated optimum filter can be written as:

w(t, τ) ∝ x(τ) = G sin(ωτ).

The output signal, therefore, will be:

y(t) =

∫
x(τ)w(t, τ) dτ = AG

∫ T

0

sin2(ωτ) dτ =

= AG

∫ T

0

1− cos(2ωτ)

2
dτ =

AG

2
T.

The mean square value of the output noise can then be written as:

n2
y = λ

∫
w2(t, τ) dτ =

λTG2

2
.

This means that the optimum signal-to-noise ratio for the case of white noise
is: (

S

N

)
opt

=
A√
λ
·
√
T

2
=

(
S

N

)
in

√
T

2
' 7.1.

This is only a small improvement from the case of the gated integrator, therefore
it is probably not worth to increase the complexity using an optimum filter
instead of the simpler gated integrator.
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5.8.2 Exercise 2

Figure 5.100: Signal considered.

This exercise comes from the exam of July 8th, 2014. Given the current
signal represented in Figure 5.100, find the signal-to-noise ratio at the output of
a simple RC filter and choose the time (T or 2T ) that is more suitable for the
acquisition of this signal. The noise at the input is white with a bilateral power
spectral density equal to SI .

Vi

Vo

Ii

Figure 5.101: A low-pass filter for a voltage signal (on the left) and for a current
signal (on the right).

Figure 5.102: Behaviour of the output of the device (solid line) with an input
square wave (dashed line).

Before starting, the first thing that we have to consider is that we are dealing
with a current signal, therefore the low-pass filter will make a current partition
between the resistor R and the capacitor C, giving the circuit that is represented
in Figure 5.101. The output of this square wave input current can therefore be
represented as in Figure 5.102. Since, to calculate the signal-to-noise ratio, we
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want to choose the highest signal, the best situation for measuring it is to sample
the output at time T ; every other replica of the output exponential waveform
will start from a positive or negative voltage, thus giving a reduced maximum
value. The signal-to-noise ratio can then be written as:

S

N
=
A
(

1− e− T
RC

)
√

SV
2RC

where SV is the unilateral input power spectral density. It is important to note
that, in this case, we are not asked the optimum value of the signal-to-noise
ratio, therefore its optimization is not needed. A reasonable value of the time
constant RC of the filter can be observed to be different from the limit RC � T
and also from the limit RC � T , since in both cases the signal-to-noise ratio is
degraded. A reasonable choice (even though clearly not optimal) therefore will
be:

RC ' T

that will give:
S

N
=
A
(
1− e−1

)√
Sv
2T

.

We are then asked to consider the optimum filter for this input white noise,
sketch the behaviour of its output and find the associated signal-to-noise ratio.
Since the noise is white, the weighting function of the optimum filter will be:

w(t, τ) ∝ x(τ)

thus being a square wave, and the output of the device can be written as:

y(t) =

∫
x(τ)w(t, τ) dτ.

Evaluating graphically this integral (that will be the integral of the superposition
of rectangles) we obtain the behaviour that is represented in Figure 5.103.

Figure 5.103: On the left, output signal of the optimum filter; on the right,
weighting function of the optimum filter in the case of Flicker noise.

We can clearly see that the output signal of this optimum filter will be
proportional to the autocorrelation function of the signal x(t). The maximum
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of this signal will therefore be in the time instant in which the weighting function
is perfectly overlapped to the signal and this happens for a time instant that is
equal to the pulse duration 2T . The signal-to-noise ratio at the output of this
filter, from the theory, can then be written as:

S

N
=

A√
SI

√∫
x2(τ) dτ = A

√
2T

SI

where x(t) is the unitary amplitude version of the signal. Assuming now to have
also a shot noise at the input of the device, we can again discuss the properties
of an optimum filter. In this case, we know that the weighting function of the
optimum filter can be written as:

w(t, τ) ∝ x(t)

λ(t)

but in the case of shot noise:

λ(t) ∝ qI(t) ∝ x(t)

therefore the ratio in the weighting function will be constant and the optimum
filter will be equal to the gated integrator. Its weighting function, therefore, will
be constant over the whole gate. If we assume this gate to be extended from
time equal to zero to a time equal to 2T , the output signal-to-noise ratio will
be equal to zero, thus not giving a suitable solution. There must be something
wrong in our way of reasoning.
The problem is that we are dealing with a current signal and currents can also be
negative, while the power spectral density of the shot noise is always a positive
quantity. Therefore, a better expression for the power spectral density of the
noise will be:

λ(t) ∝ q|I(t)| ∝ |x(t)|

that is a constant power spectral density, as in the previous case. This means
that the correct answer is, again, the one that we have given in the previous
case.
Last, we can find the optimum filter for dealing with Flicker noise. Its power
spectral density can be written as:

Sf =
k

f

and thus the optimum weighting function will not be proportional to the signal.
In this case, as we have seen in the theoretical part, we can add a whitening filter
Hw (where we can find at the output a constant power spectral density λ and a
signal Iw(t)) and, then, an optimum filter for the white noise, whose weighting
function will be proportional to the signal at the output of the whitening filter:

I(f)Hw(f).

The whitening filter can be written as:

k

f
|Hw(f)|2 = λ = const ⇒ |Hw(f)|2 =

λf

k
⇒ |Hw(f)| ∝

√
f
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and for the signal:
Iw(f) = I(f) ·Hw(f).

At the output of the whitening filter we will have an optimum filter for the white
noise, that will thus be proportional to the output signal of the whitening filter.
The overall output filter will thus be equal to the cascade of the whitening filter
and the optimum filter for the white noise:

Wopt(t, f) = I(f) · |Hw(f)|2 ∝ I(f) · f.

Since the only quantity we are interested in is the magnitude of the output
signal, we can shift it in order to be time-symmetric with respect to the time
instant t = 0, obtaining the following output signal:

I(f) ∝ sinc(πfT ) ·
[
e−jπfT − ejπfT

]
∝ sinc(πfT ) sin(πfT ) =

sin2(πfT )

πfT
.

Therefore, the Fourier transform of the weighting function of the optimum filter
will be:

|Wopt(t, f)| ∝ sin2(πfT ).

Alternatively, we could have used the fact that:

|Wopt(t, f)| ∝ I(f)

Sn(f)
=
I(f)
k
f

directly obtaining the previous result. In this case, the Fourier transform of the
weighting function can then be written as:

W (t, f) = k sin2(πfT ) = k · 1− cos(2πfT )

2
∝ 1− cos(2πfT ) =

= 1− ej2πfT − e−j2πfT

2

and therefore in the time domain:

w(t, τ) = δ(τ)− 1

2
[δ(τ − T ) + δ(τ + T )] .

5.8.3 Exercise 3

This exercise comes from the exam of September 10th, 2010. It is given a rectan-
gular signal with pulse duration TS and amplitude A whose leading front arrives
at t = 0. Consider the two following cases:

• high-frequency noise with delta-like noise autocorrelation;

• low-frequency noise with exponential autocorrelation;

and suppose that, to measure the signal, we want to take two different samples,
one before the arrival of the rectangular signal, thus at time t = 0−, to sample
the noise, and the other at time T while we have the rectangle, therefore for
0 < T < TS , and calculate the difference between them:

x(T )− x(0−).
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Find the weighting function and the Fourier transform of this kind of filter and
calculate the mean square value of the output noise.
Since we know that every sampling operation will give a delta-function in the
weighting function, we can write it as:

w(t, τ) = δ(τ − T )− δ(τ)

and in the frequency domain it will be:

W (t, f) = −1 + e−j2πfT .

The mean square value of the output noise can then be written, from a time-
domain perspective, as:

n2
y =

∫
Rxx(τ)kww(τ) dτ

therefore we first have to calculate the autocorrelation of the weighting function
of this filter. To do this, we can consider that at time τ = 0 we have four
delta functions (two positive and two negatives) that are sampling each other,
thus giving a positive delta-function with area equal to two. For positive times
τ > 0, this correlation is again equal to zero until we have performed a shift
equal to τ = T , where one of the positive delta-functions is overlapped to one of
the negative ones. The autocorrelation of the weighting function that we have
obtained can therefore be represented as in Figure 5.104.

Figure 5.104: Autocorrelation of the weighting function of the filter.

In the case of white noise, then, since we it has a short correlation time with
respect to the duration of the pulse:

Tn � T ⇒ n2
y =

∫
Rxx(τ)2δ(τ) dτ = 2Rxx(0) = 2n2

in

since we have considered to have taken two uncorrelated samples, thus summing
their variances.
In the case of the low-frequency noise, the three delta-functions that are present
in the autocorrelation of the weighting function are individually sampling the
autocorrelation of the input noise, thus giving:

n2
y = 2Rxx(0)−Rxx(T )−Rxx(T )

and since the autocorrelation of the noise is an even function:

n2
y = 2 [Rxx(0)−Rxx(T )]
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and considering that this autocorrelation is an exponentially decaying function
whose amplitude is n2

LF , we can write:

n2
y = 2

[
1− e−

T
Tn

]
n2
LF .

Obviously, this kind of filtering is not working in the white noise case, since the
samples are totally uncorrelated. For the low-frequency noise, assumed that we
are in the following limit:

T � Tn

this is working well, because the two noise samples that we are subtracting are
strongly correlated.
The question now is: how is it possible to modify this filter to improve this
performance? Assuming that we want to maintain a discrete-time filtering sys-
tem, we can try to average these samples: as a consequence of the central limit
theorem, the noise contributions will tend to vanish. It is important to notice
that this procedure has to be performed for both the sampling procedures, thus
obtaining a weighting function that is the sum of two Dirac combs, one with
negative amplitude that is sampling only the noise and the other with positive
amplitude that is sampling the noise and the signal. Averaging over each sin-
gle Dirac comb, we are getting rid of the high-frequency noise contributions,
since they will uncorrelated between one sample and the other, thus vanishing.
Subtracting then the average of the negative Dirac comb to the average of the
positive Dirac comb, we are thus obtaining an output signal in which the noise
contribution is reduced in both the spectral regions. Assuming each Dirac comb
to be composed by N elements, it is important to take care that the whole
measurement time Tm is (significantly) smaller than the correlation time of the
low-frequency noise, in order to be able to reduce it.

5.8.4 Exercise 4

Figure 5.105: Circuit considered.

This exercise comes from the exam of July 20th, 2009. Given the circuit
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represented in Figure 5.104 where at the input we have a square wave signal:

R = RS = 1 MΩ, I0 = 10 nA, C = 0.1 µF

IL = 10 mA, IH = 100 mA, f = 500 Hz

where we know that for the diode we can use the following relationship:

I = I0e
VD
Vt , Vt =

kBT

q
,
kB
q

= 8.6 · 10−5 V/K

consider that the setup is generally used to measure the temperature and com-
pute the output signal before and after the CR filter that is connected at the
output of the operation amplifier; then find the associated sensitivity as a func-
tion of the temperature T .
Studying the network, we can see that at the voltage at the output of the oper-
ation amplifier is:

V1 = −VD = −Vt ln

(
I

I0

)
thus being a square wave of amplitude A ranging between two negative voltages
VH and VL. Considering for example a room temperature condition:

T = 300 K : VH = −356.4 mV, VL = −415.8 mV.

At the output of the CR filter, since it introduces a pole at:

fp =
1

2πCR
' 1.6 Hz

we can consider valid the following approximation:

f � fp

and since we are dealing with an high-pass filter we will obtain at the output a
square wave without any DC component. The amplitude A of this square wave
output signal can then be written as:

A = Vt ln

(
IH
I0

)
− Vt ln

(
IL
I0

)
= Vt ln

(
IH
IL

)
=
kBT

q
ln(10).

The sensitivity of this device is, therefore:

kB
q

ln(10) ' 200 µV/K.

Assuming now that the output of the high-pass filter is connected to an amplifier
with the following characteristics:

G = 30, GBWP = 1 MHz

we can try to calculate the mean square value of the noise at the output. In this
case, the noise introduced by the operation amplifier is:√

SV = 20 nV/
√

Hz,
√
SI = 1 pA/

√
Hz
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−

+

RS

RD

C

R

Figure 5.106: Noise equivalent sources for the circuit considered; the dashed
generators are equivalent to the noise equivalent current source for the thermal
noise in the resistor RD.

and approximating the diode with an equivalent resistor:

RD = 1 Ω

we can have the following noise sources represented in Figure 5.105, where the
noise equivalent current source for the thermal noise in the resistor RD has been
split in two different equivalent sources.

In this case, the power spectral density at the output of the operation am-
plifier can be written as:

SV1 =

(
4kBT

RD
+

4kBT

RS
+ SI

)
·R2

D + SV

(
1 +

RD
RS

)2

but since in the last term the ratio between the resistances is negligible with
respect to the unitary term:

SV1 ' 4kBTRD +
4kBT

RS
RD + SIR

2
D + SV .

Now, we can notice that:
4

RD
� 4

RS

and therefore:

SV1
' 4kBTRD + SIR

2
D + SV ' 1.6 · 10−20 + 10−24 + 4 · 10−16 '

' 4 · 10−16 V2/Hz.

Since the transfer function of the noise for this circuit will be a band-pass
filter with a pole in 1.6 rad/s and the other pole in 106 rad/s, we can give an
approximate evaluation of the mean square value of the noise at the output of
this device as:

V 2
out = SV1 ·G2π

2
(fp2 − fp1) ' 4 · 10−16 · 302 · π

2

(
106 − 1.6

)
' (750 µV)

2
.



5.8. OPTIMUM FILTERING 391

C R

G

Figure 5.107: Noise contribution of the high-pass filter.

We can then evaluate the noise contribution of the high-pass filter, that is
related to the thermal noise in the resistor R, as in Figure 5.107. In this case,
the power spectral density can be written as:

SV = SI

∣∣∣∣ R

1 + sCR

∣∣∣∣2
where the input current power spectral density is:

SI =
4kBT

R
.

This means that we can write:

SV =
4kBT

R
· R2

1 + (ωCR)2

therefore the mean square value of the output noise can be written as:

n2
y = 4kBTR

1

4RC
=
kBT

C
' (6 µV)

2

and we can note that it depends exclusively on the capacitor and that it is
negligible.
We have thus determined that we are dealing with a root mean square value of
the noise that is equal to 750 µV, while the amplitude of the signal is:

A = 200 µV/K · T.

At the output of the amplifier, we will obtained an amplified signal:

GA = 6 [mV/K] · T [K]

and we thus want to measure a difference in the temperature:

∆T = 0.1◦C

with a signal-to-noise ratio that is equal to ten. To do this, we are sampling
the square wave and then we are averaging over N different samples. We can
now try to find what is the number N of samples that is needed. For this small
signal, the amplitude at the end of the amplifier will be:

Am = 6 [mV/K] · 0.1 [K] = 600 µV
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while the root mean square value of the noise will be:√
n2
y = 750 µV

thus giving a bad signal-to-noise ratio. Averaging over N samples, the signal-
to-noise ratio we expect to obtain is:(

S

N

)
=

600 µV

750 µV
·
√
N = 10

since the noise correlation is very small and thus we can assume it to be able to
approximate it with a white noise.
In this reasoning, however, we are committing an error. In fact, sampling the
signal we are considering only half of the amplitude of the signal, therefore
two sampling operations are needed to take into account the difference between
them and, thus, the whole amplitude of the signal. Since these two sampling
operations are distinct from the viewpoint of the noise, the variances of the
two noise samples add up, giving an increase of

√
2 in the denominator of the

signal-to-noise ratio:

S

N
=

600 µV

750 µV
·
√
N√
2

= 10 ⇒ N ' 313.

5.8.5 Exercise 5

Figure 5.108: Signal and autocorrelation of the noise considered.

This exercise comes from the exam of July 15th, 2013. Consider the signal
represented in Figure 5.108, that is exponential with a time constant equal to:

τ = 1 µs

and where we have the following unilateral power spectral density:

SV = 4 · 10−16 V2/Hz, Tn = 10 ns.

Suppose we are sampling this signal at certain time instants tS and, then, we
are averaging over these samples.
In the first case, we are performing a uniform average and we have to find the
best values for the sampling time tS and for the number of samples N . The first
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requirement that we have to impose is that the distance between two samples
is larger than the correlation time of the noise:

tS ≥ Tn

since we want to be collecting uncorrelated samples. In this condition, the mean
square value of the output noise can be written as:

n2
out =

n2
in

N
.

The signal at the output of this device will be:

x(t) = Ae−
t
τ

therefore its sampled version will be:

x(k · tS) = Ae−
ktS
τ .

At the output, therefore, we have that:

y =

N−1∑
k=0

Ae−
ktS
τ

N
' A

N
· 1

1− e−
tS
τ

and thus the signal-to-noise ratio can be written as:(
S

N

)
=

A√
n2
in

· 1
√
N ·

(
1− e−

tS
τ

)
and this will improve for small values of the sampling time tS . The best choice,
in this case, is therefore:

tS = Tn

and since according to this choice we have that:

tS � τ

we can obtain the following expression for the signal-to-noise ratio:(
S

N

)
=

A√
n2
in

· τ√
NtS

.

The measurement time therefore is:

T = N · tS → N =
T

tS

and thus the signal-to-noise ratio can be written as:(
S

N

)
=

A√
n2
in

· τ√
TtS

.
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From the given data, we can write the mean square value of the input noise as:

SV = 2n2
inTn → n2

in =
SV
2Tn

=
SV fn

2

where we have considered that this property holds for the bilateral power spec-
tral density, but we were given the unilateral one. In this case, the signal-to-noise
ratio can be written as:

S

N
=

A√
n2
in

· τ√
TtS

=
A√
SV
· τ
√

2tS√
TtS

= Aτ

√
2

TSV
= 1

and therefore the minimum detectable amplitude, in this case, is:

Amin =
1

τ

√
TSV

2
' 31.6 µV

assuming:
T ' 5τ.

On the other hand, if we had assumed:

T = τ

we would have obtained:
Amin ' 22 µV

while taking just one sample:(
S

N

)
=

A√
n2
in

→ Amin = 141 µV

and therefore it is useful to extend this average over different samples.
At this point, we can find the optimum weight and compute the new optimum
signal-to-noise ratio. Assuming to have a white noise at the input, the weights
must be proportional to the signal, therefore:

wk = e−
ktS
τ .

This means that the output signal can be written as:

y =

N−1∑
k=0

wkxk

where we have that:
xk = x(k · tS) = Ae−

ktS
τ .

This gives the following output signal under the assumption of having a large
number of samples:

y =

N−1∑
k=0

Ae−
2ktS
τ ' A

1− e−
2tS
τ

but since:
tS ' Tn � τ
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it gives:

y ' A τ

2tS
.

The mean square value of the output noise, since we are considering a set of
uncorrelated samples:

n2
out = n2

in ·
N−1∑
k=0

w2
k = n2

in

N−1∑
k=0

e−
2ktS
τ ' n2

in ·
τ

2tS
.

This gives thus the following signal-to-noise ratio:(
S

N

)
=

A√
n2
in

·
√

τ

2tS

but since:
SV
2Tn

=
SV
2tS

it gives: (
S

N

)
= A

√
τ

SV
= 1

thus obtaining the following minimum detectable amplitude for the signal:

Amin =

√
SV
τ
' 20 µV.

At this point, we can suppose to be dealing also with an optimum filter in
continuous time and study what is the minimum detectable signal. For this
filter, the weighting function is proportional to the amplitude of the signal:

w(t, γ) = e−
t
τ

therefore the signal-to-noise ratio can be written as:(
S

N

)
=

A√
λ
·

√∫
x2(t) dt = A

√
2

SV

√∫ ∞
0

e−
2t
τ dt = A

√
τ

SV

where we have considered the unilateral power spectral density as:

λ =
SV
2
.

In this case, the minimum detectable amplitude for the signal is:

Amin =

√
λ

τ
' 20 µV

that is the same value that we obtained for the discrete time optimum filter.
This is because the number of samples is so large that basically there is not any
difference between the continuous time and the discrete time case.
We can now consider the case of a non-white noise, for which:

Tn���τ
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and we can try to calculate its signal-to-noise ratio remembering that the fol-
lowing integral is valid: ∫ k

0

xe−x dx = 1− ke−k − e−k.

In this case, the associated optimum filter can be written as:

w(t, γ) = Ge−
γ
τ .

The mean square value of the output noise, therefore, can be written as:

n2
y =

∫
Rnn(γ)kww(γ) dγ

and thus we have first to compute the autocorrelation of the weighting function
kww(γ). This calculation has already been performed, obtaining the following
even exponential behaviour:

kww(γ) = G2τe−
|γ|
τ .

We need therefore to compute this signal as:

n2
y = 2

∫ Tn

0

Rnn(γ)kww(γ) dγ =

∫ Tn

0

e−
γ
τG2τn2

in

(
1− γ

Tn

)
dγ =

= n2
inG

2τ

∫ Tn

0

e−
γ
τ

(
1− γ

Tn

)
dγ − n2

inG
2τ2

∫ Tn
τ

0

(
1− τ

Tn
x

)
e−x dx =

= n2
in(Gτ)2

[
1−��

�
e−

Tn
τ − τ

Tn

(
1−
�
��
�Tn

τ
e−

Tn
τ − e−

Tn
τ

)]
=

= n2
in(Gτ)2

(
1− τ

Tn
+

τ

Tn
e−

Tn
τ

)
.

The output signal, on the other hand, can be written as:

y =

∫
x(γ)w(t, γ) dγ = GA

∫
e−

2γ
τ dγ =

GAτ

2

and thus the signal-to-noise ratio will be:(
S

N

)
=

A

2

√
n2
in

· 1√
1− τ

Tn
+ τ

Tn
e−

Tn
τ

.

5.8.6 Exercise 6

This exercise comes from the exam of September 23rd, 2016. It is given a filter
whose weighting function is represented in Figure 5.109 and an input noise with
a certain unknown correlation function Rnn(τ). From the graph of the weighting
function, we can see that at time t = 0 we are sampling the noise with negative
weight k, while at time t = T we are sampling the signal and the noise with a
unitary positive weight. We want to find the mean square value of the output
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Figure 5.109: Weighting function of the filter considered.

noise and the optimum value of the coefficient k.
From the theory, the mean square value of the output noise can be written as:

n2
out =

∫
Rnn(τ)kww(τ) dτ

where the autocorrelation of the weighting function can be calculated to be:

kww(τ) = (1 + k2)δ(τ)− kδ(τ − T )− kδ(τ + T ).

This means that the previous integral can be simply calculated as:

n2
out = (1 + k2)Rnn(0)− 2kRnn(T ) = Rnn(0)

[
1 + k2 − 2k

Rnn(T )

Rnn(0)

]
.

To find the optimum value of k, we have to impose that the mean square value
of the noise is minimum:

∂n2
out

∂k
= 0 → 2k − 2

Rnn(T )

Rnn(0)
= 0

thus obtaining:

k =
Rnn(T )

Rnn(0)
.

From this technique, therefore, the mean square value of the output noise can
be calculated as:

n2
out = n2

in · (1− k
2).

5.9 Flicker noise and LIAs

5.9.1 Exercise 1

This exercise comes from the exam of June 29th, 2009. It is given the signal
represented in Figure 5.96 at page 372, where for the gated integrator we have
previously obtained that in the case of an optimum filtering for the white noise
the gate time was:

Tg = 0.74 µs

where the white noise had the following bilateral power spectral density:

λ = 10−12 V2/Hz.
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Now, we have an additional flicker noise with the following corner frequency:

fnc = 10 kHz

and we know that the system is running for a maximum of eight hours and that
the gain of the gated integrator is such that for the following constant input
signal we obtain:

Vin = 10 mV → Vout = 1 V.

We have now to calculate the contribution of the white noise and of the flicker
noise at the output of this device, stating in particular whether it is convenient
to eliminate the flicker noise from this system.
Since we are dealing with a gated integrator, the output of the device will be
the amplified integral of the input, thus being

Vout = G

∫ Tg

0

Vi(t) dt = GTg · 10 mV = 1 V

thus obtaining the following gain at the output of the device:

G =
100

Tg

[
1

s

]
.

It is important to notice that the dimensions of this gain is the inverse of a time.
The white noise contribution, therefore, will be:

n2
y,WN = λTgG

2 = λTg ·
104

T 2
g

=
104 · λ
Tg

= (116 mV)2.

For the case of the flicker noise, the associated power spectral density will be:

Sn =
k

f

and from the definition of noise corner frequency as the frequency at which the
power spectral density of the white noise is equal to the one of the flicker noise:

k

fnc
= λ → k = λ · fnc = 10−8 V2.

Therefore, the mean square value of the output flicker noise:

n2
y,FN =

∫
k

f
|W (t, f)|2 df

but since the weighting function of the gated integrator is rectangular:

|W (t, f)| = sinc(πfTg) ·GTg

we obtain:

n2
y,FN =

∫ +∞

0

k

f
sinc2(πfTg) ·G2T 2

g df =

= k(GTg)
2

∫ +∞

0

1

f
sinc2(πfTg) df.
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It is important to notice that we have assumed the flicker noise to have a uni-
lateral power spectral density and that this integral is diverging when it is
performed between f = 0 and f → +∞. In the equivalent rectangle approxi-
mation, however, the sinc2 function is transformed into a rectangle that ends
either in the first zero of the sinc2 function19 or at a certain frequency fh:

n2
y,FN '

∫ fh

0

k(GTg)
2 1

f
df.

In the zero frequency, this corresponds to an infinitely extended time interval
over which we are considering the signal. This is clearly not meaningful, therefore
we can replace this lower limit with the minimum frequency that we can detect,
that corresponds to the maximum time interval over which we can study the
signal:

fl =
1

Ttot
=

1

8 hours
' 34.7 µHz.

Sinusoidal components at a frequency that is lower than this value, therefore,
will only give a constant offset in our signal. This means that our signal can be
written as:

n2
y,FN = k(GTg)

2 ln

(
fh
fl

)
' (48.7 mV)2.

It is important to notice that we have evaluated the logarithmic term as:

ln

(
fh
fl

)
' 23.7

and assuming, for example, that we are off of a factor 2 on one of the frequencies,
this will result in an error that is equal to:

± ln(2)

thus being actually very small. This is due to the fact that this dependence is
logarithmic, thus being a very weak dependence. Comparing now this value with
the one that we have previously obtained, we can see that the dominating noise
term is the white noise one, thus not making really meaningful any additional
effort for eliminating the flicker noise:√

n2
tot =

√
n2
FN + n2

WN ' 125 mV '
√
n2
WN .

5.9.2 Exercise 2

This exercise comes from the exam of March 05th, 2012. Again, we are consid-
ering the signal represented in Figure 5.97 at page 375 that is coming at the
input of an amplifier with gain G and input noise power spectral density Sv:

f0 = 500 Hz, Sv = 50 nV/
√

Hz, G = 100.

Assuming to have as a reference signal a square wave signal between −1 and
+1 that is synchronous with the signal, find a filter for detecting VA with the
following signal-to-noise ratio:

S

N
= 10.

19Since we are obtaining a result that depends logarithmically on the frequency, this is an
acceptable approximation since it will only give a small error.
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To do this, we can try to use a lock-in amplifier in two different cases:

• in the first case, the reference is directly multiplied by the signal and then
both are passed to the low-pass filter;

• in the second case, a certain filter (for example a band-pass filter or a
selective filter) are added both on the incoming reference and on the in-
coming signal before the multiplication and then they are passed to the
low-pass filter.

LPF BP

BP

LPF

Figure 5.110: On the left, lock-in amplifier without the selective filters; on the
right, same scheme but with the addition of these elements.

In the case in which we are using a band-pass filter, only the fundamental
oscillation at 500 Hz will pass through this filter, reaching the multiplication
stage. In this case, the signal-to-noise ratio:

S

N
=

GVin√
G24BWnSx(fr)

=
Vin√

4BWnSx(fr)

where Vin is the input amplitude, BWn is the noise bandwidth of the low-
pass filter and Sx(fr) is the bilateral power spectral density at the reference
frequency. However, since the problem is giving us a unilateral power spectral
density:

S

N
=

Vin√
2BWnSv(fr)

where the input noise is white. The amplitude of the fundamental harmonic of
the square wave, from the expression of this square wave as a Fourier series:

4B

π

[
cos(ωt)− cos(3ωt)

3
+ . . .

]
can be written as:

Vin =
VA
2
· 4

π
=

2VA
π

and thus we get the following signal-to-noise ratio:

S

N
=

2VA/π√
2BWnSv

= 10.

From this expression we can obtain the noise bandwidth of the low-pass filter:

BWn = 81 Hz.
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In the other case, where we do not have any filtering on the input signal and
reference, we are calculating the product between the two previously defined
synchronous square waves, thus obtaining a square wave whose high level is at
VB + VA and whose low level is at −VB . The low-pass filter, passing only the
low-frequency components, will give the average value of this amplitude, that
is:

Vout =
VB + VA − VB

2
=
VA
2
.

Since the reference signal can be written, in the frequency domain, as:

Wr(f) =
∑

k=1,3,5,...

Bk [δ(f − kfr) + δ(f + kfr)]

and therefore the associated frequency response will be:

Swr(f) =
∑

k=1,3,5,...

B2
k [δ(f − kfr) + δ(f + kfr)] .

This gives the following expression of the demodulation signal:

Sd(f) = Sv(f) ∗ Swr (f) =
∑

k=1,3,5,...

B2
k [Sv(f − kfr) + Sv(f + kfr)] '

' 2
∑

k=1,3,5,...

B2
kSv(f − kfr) = 2Sv ·

∑
k=1,3,5,...

B2
k =

= 2SvB
2
1 ·

∑
k=1,3,5,...

(
Bk
B1

)2

= 2Sv

(
2

π

)2

·
+∞∑
n=0

1

(2n+ 1)2
=

= 2Sv

(
2

π

)2

· π
2

8
= Sv.

This result is consistent with the theory we have studied, since we are mul-
tiplying the signal by a square wave whose amplitude ranges from −1 to +1,
therefore calculating the square modulus we will not change anything on the
output with respect to the noise. At the output, therefore, the mean square
value of the noise can be calculated as:

n2
out =

√
SvBWnG2

and thus the requirement on the signal-to-noise ratio:

S

N
=

VA/2√
SvBWn

= 10

will give the noise bandwidth required:

BWn ' 100 Hz.

Now, we can consider the presence of a sinusoidal interference that is coming
to this lock-in amplifier with a frequency equal to 3f0. In the case in which
we are filtering with a band-pass filter the incoming signal, we can see that
this oscillation will not pass through the filter that is centred around f0, thus
allowing us to reject this interference or, at least, to strongly attenuate it in
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the demodulation stage, being ultimately rejected in the low-pass filter. On the
other hand, in the case in which we are not adopting any band-pass filter, since
this is one of the odd harmonics of the fundamental that will be preserved in the
demodulation stage (since it corresponds to one of the Fourier components of the
square wave), it will be passed by the low-pass filter, determining a decrement
in the signal-to-noise ratio. In poor words, we can say that this interference is
“leaking” through one of the possible “frequency windows”.

5.9.3 Exercise 3

Figure 5.111: Network considered.

This exercise comes from the exam of September 25th, 2009. It is given the
network represented in Figure 5.111, where:

R ' 1 kΩ, BW = 5 Hz, Sv =
K

f
, K = 6 · 10−8 V2

where the power spectral density is unilateral. We would like to measure the re-
sistance R with a resolution of 10 Ω with a signal-to-noise ratio and a maximum
signal equal to:

S

N
= 10, IS = 10 µA

and we are ask to find the bandwidth of the low-pass filter and the frequency
of the reference signal.
At the input of the low-pass filter, we will have again a baseband signal, therefore
we want the bandwidth of this filter to be slightly bigger than the bandwidth
of the signal:

BWLPF = 10 ·BWsig = 50 Hz.

From this value of the bandwidth of the low-pass filter, we can calculate the
associated signal-to-noise ratio:

S

N
=

Vin√
2Sv(fc)BWn

= 10

where the noise bandwidth and the flicker noise power spectral density are:

BWn =
π

2
BWLPF , Sv =

K

fr
.
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From these values, we can obtain the required amplitude for the input signal:

Vin = Is ·∆R = 100 µV

where ∆R is the resolution required. This means that the frequency of the
reference signal will be:

fr ' 93.6 kHz → 100 kHz.

Since in our network we have a selective, bandpass filter, only the sinusoidal
component at the fundamental frequency will pass.
Consider now the case in which instead of a resistance R we have a complex
impedance:

Z = R+ jX = R+Xej
π
2

where we want to contemporarily measure both the real and the imaginary part
of this impedance.

Figure 5.112: Setup for the measurement of the real and imaginary part of the
complex impedance.

This can clearly be done as in Figure 5.112 by using two different demodu-
lating networks, one in quadrature with the other, thus having each one of these
two reference signals to be synchronous either to the real part of the signal or
to the imaginary part (that will have an additional phase of 90◦).
Last, we are asked to find the output noise for the network in Figure 5.111 when
there is not any selective filter for the signal. In this case, the reference signal
in the frequency domain can be written as:

WR(f) =
∑

k=1,3,5,...

Bk[δ(f − kfr) + δ(f + kfr)]

and therefore the spectral response of the filter can be written as:

SwR(f) =
∑

k=1,3,5,...

B2
k[δ(f − kfr) + δ(f + kfr)].

This gives, therefore, the following expression for the power spectral density of
the demodulated signal:

Sd(f) = Sv ∗ SwR(f) =
∑

k=1,3,5,...

B2
k[Sv(f − kfr) + Sv(f + kfr)]
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thus giving the following power spectral density for the output noise:

Sout(f) =
∑

k=1,3,5,...

B2
k[Sv(−kfr) + Sv(kfr)]

and considering that this power spectral density ought to be unilateral:

Sout(f) =
∑

k=1,3,5,...

B2
k · S(kfr) = B2

1

∑
k=1,3,5,...

(
Bk
B1

)2

Sv(kfr)

where we have the following amplitude term:

B1 =
4A

π
.

In the case of the white noise:

∑
k=1,3,5,...

(
Bk
B1

)2

=

+∞∑
n=0

1

(2n+ 1)2
=
π2

8

while in the case of the flicker noise:

∑
k=1,3,5,...

(
Bk
B1

)2

Sv(kfr) =

+∞∑
n=0

1

(2n+ 1)2
· K

(2n+ 1)fr
' 1.05

K

fr
.

Since we have that: √
1.05 ' 1.026

we have an improvement of the signal-to-noise ratio in this second case. As in
the previous case, we can see that the presence of the selective filter is useful
for removing all the possible interferences that are caused by the harmonics of
the reference frequency fr.

5.9.4 Exercise 4

Figure 5.113: The network considered and the temporal autocorrelation of the
first noise signal.

This exercise comes from the exam of February 16th, 2015. It is given the
network represented in Figure 5.113, where we have that:

S1 = A cos(ωrt) ' S2, fr = 200 Hz
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and where the autocorrelation of the first noise signal is given in Figure where:

τn = 2 ms, n2
1 = 4 · 10−9 V2.

Assuming now the following amplitude for the signals and for the second noise:

A1 ' A2 = 10 µV, n2 = 0

find the bandwidth of the low-pass filter in order to obtain a signal-to-noise
ratio on the first signal that is equal to one.
In this case, the signal S2 is actually a reference signal and we are dealing with
the usual lock-in amplifier. The signal-to-noise ratio can thus be immediately
written as:

S

N
=

A1√
4Sn1

(fr)BWn

where we can write the power spectral density associated to the first noise as:

Sn1(fr) ' sinc2(πfrτn) · n2
1τn.

Therefore, imposing the requirement on the signal-to-noise ratio, we can imme-
diately the noise bandwidth of the device:

S

N
= 1 ⇒ BWn ' 5 Hz

and therefore the pole of the low-pass filter will be placed in 2BWn/π.
Now, the noise n2 is a white noise with the following power spectral density:

λ = 10−14 V2/Hz

that is totally uncorrelated with the first noise. The system is now used for
measuring the cross-correlation in zero for the two signals neglecting the noise
terms determine the new signal-to-noise ratio.
In this case, the output signal can be written as:

x(t) = (s1 + n1) · (s2 + n2) = s1s2 + n1s2 + n2s1 + n1n2 '
' s1s2 + s1n2 + s2n1

where the first term will represent the signal that we would like to measure, while
all the other terms will represent noise. From the expression of the signals, we
can write:

s1s2 = A1A2 cos2(ωrt) =
A1A2

2
[1 + cos(2ωrt)]

and considering that at the output of the device we will have a low-pass filter,
we will obtain as an output signal:

A1A2

2
' A2

1

2
.

For the noise contribution at the output, we can consider that:

s1 ' s2 ⇒ s1n2 + s2n1 ' s1(n1 + n2)
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and therefore the output noise of the lock-in amplifier when the two noise sources
are uncorrelated can be written as:

n2
out = A2

1 ·BWn · Sn(fr)

where the power spectral density of the noise will be the sum of the power
spectral densities of the two individual noise contributions:

Sn(fr) = n2
1τn sinc2(πfrτn) + λ.

The new signal-to-noise ratio can thus be written as:

S

N
=

A1√
4BWn(n2

1τn sinc2(πfrτn) + λ)
' 1

that is almost identical to the one we had in the previous case since the domi-
nating noise term is the noise on the first signal n1:

λ ' 10−14 V2/Hz� n2
1τn ' 8 · 10−12 V2/Hz.

Now, we have to consider explicitly the term that we previously neglected that
was related to the product of the two realizations of the noise processes, thus
studying the correlation between these two noises. Defining therefore this term
as:

nx(t) = n1(t)n2(t)

we can calculate its autocorrelation as:

Rnxnx(t, t+ τ) = nx(t)nx(t+ τ) = n1(t)n1(t+ τ)n2(t)n2(t+ τ)

but since the two noise contributions are totally uncorrelated we can write:

Rnxnx(t, t+ τ) = n1(t)n1(t+ τ) · n2(t)n2(t+ τ).

This last equivalence can be demonstrated starting from the definition of en-
semble average:

Rnxnx(t, t+ τ) =

∫∫
n1(t)n1(t+ τ)n2(t)n2(t+ τ)P(n1, n2, t, τ) dn1 dn2

but since the noise processes are uncorrelated, their joint probability can be
written as the product of the single probabilities:

P(n1, n2, t, τ) = P(n1, t, τ) · P(n2, t, τ)

thus allowing us to write the ensemble average as the product of the two different
ensemble averages for the two noise processes. In this case, since the second noise
term is white:

Rn2n2(τ) = λ · δ(τ)

and therefore:

Rnxnx(t, t+ τ) = Rn1n1
(τ) · λδ(τ) = λn2

1δ(τ)
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and we thus obtain a new white noise term with the following power spectral
density:

Snx(f) = λn2
1 = 4 · 10−23 V2/Hz.

This power spectral density is much smaller than any other given one, thus this
term is surely negligible with respect to the others.
Last, we can consider the addition of a delay in one of the two branches and
study how this affects the noise term in the measurement of the correlation. If
we assume that this delay is inserted in the second branch of the device, we
can surely say that it will not affect the output noise since the noise term n2,
being white, is stationary, thus not changing with time. The same conclusion,
however, could be obtained also inserting this delay in the first branch, since
we have just demonstrated the whole output noise to be again stationary (or
white). The presence of a delay, regardless of its position, will not affect in any
way the output noise term.

5.9.5 Exercise 5

Figure 5.114: The network considered.

This exercise comes from the exam of September 26th, 2014. It is given the
network represented in Figure 5.114, where the output at time t is the difference
between two samples of the input signal, one taken at time t by the switch S2

and the other taken at time t − ts by the switch S1. The input signal is a
rectangular pulse with amplitude A and duration equal to 1 µs. For the sake of
simplicity we can assume the gain of this network to be equal to one and we are
asked, first, to calculate the weighting function of this filter.
To calculate it, we can consider the output of this device at time t when a delta-
function has arrived at a certain time τ . If a delta function arrives between time
t and time t− ts, where the only the first switch is closed, then it will determine
an exponential decay of the output, that will be maximum at the arrival time
of the delta-function and then it will tend toward zero. Between time t and
time t − ts, therefore, the weighting function of the filter will be equal to the
one of a low-pass filter. If a delta-function is coming before time t − ts, it will
start an exponential decay until time t − ts, where it will be sampled, thus
remaining constant. This means that the corresponding weighting function will
be a negative exponential with its maximum in t− ts. This behaviour can thus
be represented as in Figure 5.115.

Now, we have the given rectangular signal on top of a white noise and we
are asked to find the parameters of the filter, in particular the time constant
TF . To maximize the signal-to-noise ratio obtained, we can take the first sample
just before the arrival of the rectangular signal and the second sample when the
signal is present. To have a good measurement, probably it is not good to have
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Figure 5.115: Weighting function of the filter considered.

a time constant of the filter that is much larger than the duration of the pulse:

TF � TP ' 1 µs

since it will significantly reduce the signal acquired20. We can thus impose:

TF < TP

and since five time constants of the filter are needed for reaching the steady-state
condition required for the best acquisition of the signal, we can impose:

TF '
TP
10

=
1 µs

10
= 100 ns.

This situation is represented in Figure 5.116.

5TF

TP

Figure 5.116: Incoming pulse (solid line) sampled with a larger (dotted) or
smaller (dashed) time constant of the filter.

Taking then a time interval between the two samples that is:

ts ≥ 500 ns

we are actually safe, thus sampling the signal only when the amplitude of the
voltage across the capacitor is at its maximum amplitude A:

Vo = A
(

1− e−
ts
TF

)
' A.

We need now to compute the output noise, that will be the noise at the output
of the low-pass filter:

n2 =
Sv

4TF
.

20This can be seen also considering that the exponential weighting function would experience
a fast exponential decay.
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At the output of the device, taking the difference of the two samples, if they were
uncorrelated we would be increasing the variance of the noise of a factor two.
However, the low-pass filter is introducing a correlation in the noise: are thus
the two samples uncorrelated or not? If the distance between the two samples
is lower than the correlation time

ts > τn

then the two samples are uncorrelated and the solution we have just described
is fine. At the output of a low-pass filter, the correlation of the noise is the time
correlation of an exponential weighting function, that is a bilateral exponential
whose maximum value is λ/2TF and whose behaviour can be described by the
following function:

λ

2TF
e
− |τ|TF .

In this way, therefore, we are relating the correlation time to the time constant
of the filter. However, since we know that:

ts > 5TF

the two samples will be indeed not correlated and thus the mean square value
of the noise can be written as:

n2
out = 2 · n2 =

Sv
2TF

.

In the general case, we should have written:

n2
out =

∫
Rxx(τ)kxx(τ) dτ

but since the autocorrelation of the noise can be written as:

Rxx(τ) = λ · δ(τ)

we obtain:

n2
out = λkxx(0) = λ

∫
w2(t, τ) dτ

and explicitly doing this calculation it is possible to obtain the correct value of
the mean square value of the noise:

n2
out =

Sv
2TF

(
1− e−

ts
TF

)
.

Indeed, however, the previous approximation was acceptable.
Now, we can repeat these calculations in the case of a flicker noise. Since the
expression of the flicker noise is particularly easy in the frequency domain, we
can make use of the Parseval’s theorem and write

n2
out =

∫
Sv(f)|W (t, f)|2 df.

Remembering that, from the properties of the Fourier transform, the transform
of a reversed exponential centred in t = 0 was:

1

1− sTF
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while for a reversed exponential centred in ts we had:

ejωts

1− sTF

then we can write the spectral response of the filter as:

|W (t, f)|2 =
1

1 + (2πfTF )2
·
∣∣1− ejωts∣∣2 .

From the well-known properties of the complex exponential, we can write:∣∣1− ejωts∣∣2 = [1− cos(ωts)]
2

+ sin2(ωts) = 2− 2 cos(ωts)

and thus the spectral response at the end can be written as:

|W (t, f)|2 = 2 [1− cos(ωts)] ·
1

1 + (2πfTf )2
.

Evaluating thus the mean square value of the noise, assuming valid the following
approximation:

cos(x) ' 1− x2

2

we can obtain:

n2
out =

∫ +∞

0

K

f
· 2(1− cos(2πfts))

1 + (2πfTF )2
df '

'
∫ +∞

0

K

f
· (2πfts)

2

1
df = (2πts)

2 ·K
∫ fh

0

f df =

= K(2πts)
2 f

2
LP

2

where we have considered that the maximum frequency that we can find at the
output is the one of the pole of the low-pass filter:

fLP =
1

2πTF
.

We can now comment the effect of this filter on the noise of the amplifier.
Assuming a noise generator that, for example, is connected to the positive input
pin of the operation amplifier of the network, after the capacitor, we can clearly
observe that the input and the output of the low-pass filter in this situation will
be placed at zero. Moreover, also the capacitors are set at zero, since this noise
source is after them, therefore the filter is completely ineffective in removing
this kind of noise, that will completely found at the output of the amplifier.

5.9.6 Exercise 6

This exercise comes from the exam of February 17th, 2014. Given the network
represented in Figure 5.117, initially neglecting the presence of the operation
amplifier and considering the classical configuration of the Wheatstone bridge
(where the negative pin of the operation amplifier is actually directly connected
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Figure 5.117: The network considered.

at the grounded input of the amplification stage and where the lowest node of
the bridge is set to ground) with:

Vcc = 5 V, ∆Vcc = 1%, R = 350 Ω, BW = 10 Hz

xmax = 5 · 10−3, 12 bit of resolution, CMRR(A) = 60 dB

calculate the required common-mode rejection ratio neglecting the DC offset of
the device.
In this case, the bias voltage of the Wheatstone bridge is fluctuating with an
amplitude of 1%:

∆Vcc = 1% = 50 mV.

Due to this fluctuation, we have a common-mode variable21 signal that is equal
to:

∆Vcc
2

= 25 mV.

From the expression of the output voltage of a Wheatstone bridge with a single
active element, the differential voltage can be written as:

Vcc
4
xmax = 6.3 mV.

In the worst case, the minimum differential voltage that we need to discriminate
from the noise will be represented by the least significant bit (LSB) signal:

Vdm,LSB =
Vcc
4
xmax ·

1

212
' 1.53 µV

and therefore the minimum common-mode rejection ratio required will be:

CMRR >
∆Vcc

2

Vdm,LSB
=

25 mV

1.53 µV
= 84 dB.

Since the given common-mode rejection ratio was only 60 dB, this is clearly not
enough to reach the required resolution on this measurement.
To improve this common-mode rejection ratio, we can change the circuit as
the one actually represented in Figure 5.117. Studying the network, we can

21In general, when we are measuring a signal the problems are represented by fluctuations,
since constant signals can always be filtered out.
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see that the operation amplifier that we have added is working in closed-loop
negative feedback configuration with the positive pin grounded. This means
that its negative pin will be at virtual ground and, therefore, the output of
the operation amplifier, that corresponds to the lowest node of the Wheatstone
bridge, will be at a voltage equal to:

−Vcc(1 + x).

This means that the only non-grounded pin of the amplifier A will be at a
voltage equal to:

Vcc
2
− Vcc(1 + x)

2
=

1

2
[Vcc − Vcc(1 + x)] = −Vcc

x

2

and thus we have actually improved the differential signal of a factor two. In
this case, the differential mode least significant bit signal can thus be written
as:

Vdm,LSB =
Vcc
2
xmax

1

212
' 3.06 µV.

Moreover, another advantage is present in this kind of network. In the equilib-
rium case, in fact, we have that the relative variation of the active element is
zero:

x = 0

and therefore the common-mode voltage is clearly equal to zero. Since we do
not have any common-mode voltage, this will not give any problem about the
common-mode rejection ratio. The disadvantage of this network is that the
introduction of an operation amplifier will increase the complexity of the network
and, moreover, since it will give a negative output, now a dual power supply is
needed and this feature may or may not be present in our original circuit.
If we now consider the fluctuations on the bias signal of the Wheatstone bridge,
assuming ∆Vcc to be a residual of the rectification of the power supply at 50 Hz,
we can think to add a filter at the output of the amplifier A to improve the
signal-to-noise ratio. What is the best filter that we can choose? Obviously, a
gated integrator with an integration time that is multiple of the period of the
interference at 50 Hz will ensure that this interference is completely rejected.
We can thus choose, for example, this integration time to be equal to:

Tg ' 20 ms.

In principle, we could have chosen also multiples of this time, however this time
interval must not be too long otherwise we end filtering out also the signal we are
trying to measure. From a theoretical point of view, also a low-pass filter with
a quite step cut-off could have been adopted, thus not, for sure, a single-pole
low-pass filter.

5.10 A complete exam test

These exercises come from the exam of July 6th, 2017.
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Figure 5.118: The voltage-controlled current source considered.

5.10.1 Exercise 1

It is given the voltage-controlled current source represented in Figure 5.118,
where:

A0 = 120 dB, GBWP = 1 MHz.

The first point requires the calculation of the ideal gain of the network. Since we
are dealing with a current source or, alternatively, a transconductance amplifier,
we can call Vo, that is the output voltage of the network, the voltage at the
positive input pin of the second operation amplifier:

Vo = V +
2 .

Since the second amplifier can be assumed to be in a negative feedback closed-
loop configuration22, defining I as the current flowing at the input of the network
and thus also through the feedback resistance of the first operation amplifier,
we can write:

V +
2 = V −2 = Vo ⇒ I =

Vi − Vo
2R

.

This means that the voltage at the negative input pin of the first operation
amplifier and, thus, the voltage at the positive input pin of the first operation
amplifier can be written as:

V −1 = Vi −RI = Vi −
Vi
2

+
Vo
2

=
Vi + Vo

2
= V +

1

and this could have been demonstrated also considering the superposition prin-
ciple at these nodes from the input of the circuit Vi and from its output Vo.
Since the current flowing in the lower branch of the first operation amplifier will
be identical in both the resistors, we can obtain that the voltage at the output
of the second operation amplifier will be:

Vout,2 = Vi + Vo.

This means that the output current Io, that is the current flowing through the
resistor RS , will be:

Io =
Vi + Vo − Vo

RS
=

Vi
RS

22This statement will be demonstrated in the second point of the exercise; in principle, we
are not sure that this is the right behaviour, but it is likely to be it since it is the most common
one.
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and this is thus the ideal gain of the amplifier:

Gid =
1

RS
.

− +
−

+

RS RL

RR

R

R

VS

21

Figure 5.119: The circuit needed for the calculation of Gloop,2.

The second point consists in calculating the loop gain of the second operation
amplifier considering a resistive load RL and, in a first approximation, consid-
ering the first operation amplifier as an ideal one. To do this, we can ground the
input Vi and cut the loop at the only common point between the various loops
that are involving the second operation amplifier. This common point, that as a
side effect will make useless the reconstruction of the impedance, is the output
of the second operation amplifier. Imposing then a test source VS at the node
that was previously connected to the output of the second operation amplifier,
we can obtain that:

V +
2 = VS

RL
RL +RS

while, for the first operation amplifier:

V +
1 = V −1 =

VS
2
.

This will give:

V −2 = VS

and from this we can write the output voltage of the second operation amplifier
as:

Vo = A(s)
(
V +

2 − V
−
2

)
= A(s)

(
VS − VS

RL
RL +RS

)
=

= −A(s)VS
RS

RL +RS
.
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This gives the following expression of the loop gain of the second operation
amplifier:

Gloop,2 = −A(s)
RS

RS +RL
'

{
−A(s), if RL � RS

−A(s)RSRL , if RL � RS
.

Notice that, in this way, we have demonstrated the second operation amplifier
to be in a negative feedback configuration.

120

RL 106 f

|Gloop,2|

Figure 5.120: Bode diagram of the loop gain of the second operation amplifier
in the different limiting cases: the solid line is for RL � RS , the dashed ones
for RL � RS .

Since this loop gain is a single pole transfer function, as it is represented in
Figure 5.120, from an ideal point of view it should not give any stability issue.

−

+

RR

1

Figure 5.121: A portion of the previous network where we can recognize an ideal
amplification stage.

Now, we can refine our analysis by considering also the presence of a pole
in the first operation amplifier. Considering that the part of the network that
is represented in Figure 5.121 has an ideal gain that is equal to two, we can
replace its ideal gain with the real one, thus taking into account the pole that
is present in the operation amplifier:

G1 =
Gid,1

1− 1
Gloop,1

, Gid,1 = 2

therefore we can obtain:

G1 =
2

1 + sτc
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where the time constant of the pole will be:

1

2πτc
=
GBWP

2
= 500 kHz.

Gopen

Gid

G1

log(2)

f

500 kHz

Figure 5.122: Calculation of the real gain of the previous stage.

Therefore, in the calculation of the loop gain of the second operation ampli-
fier we can consider that:

V −2 = VS
1

1 + sτc
, V +

2 = VS
RL

RS +RL

and therefore we can obtain:

Gloop,2 = A(s)

(
RL

RS +RL
− 1

1 + sτc

)
= −A(s)

RL +RS −RL − sτcRL
(RS +RL)(1 + sτc)

=

= −A(s)
RS

RS +RL

1− sτc RLRS
1 + sτc

.

Taking into account the presence of the pole in the first operation amplifier,
therefore, we will have an additional pole and an additional non-minimum phase
zero in the expression of the loop gain of the second operation amplifier. The
frequency of the pole will be completely determined by the frequency of the
stage that we have previously considered, while the frequency of the zero will
be determined by the value of the load:

fp =
1

2πτc
= 500 kHz, fz =

RS
2πτcRL

=
RS
RL
· GBWP

2
.

Noticing that: {
RL � RS ⇒ fz � fp

RL � RS ⇒ fz � fp

since we have a non-minimum phase zero we would like it to not came into
play in the calculation of the phase, thus being far on the right of the crossover
frequency. This means that, for values of RL since we have two poles on the right
of the crossover frequency the phase margin will be smaller than 45◦, giving rise
to stability issues23:

φm = 180◦ − 90◦ − arctan

(
fcut
fp

)
= 90◦ − arctan(

√
2) ' 35◦.

23In this case, the crossover frequency can be calculated considering the Bode diagram of
the magnitude of the loop gain.
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In the other case, when the non-minimum phase zero comes into play, the sta-
bility troubles are even worse. In this case, in fact, the non-minimum phase zero
is even making the system unstable, as it can be seen considering the associated
Bode diagram of the phase in this case.

Figure 5.123: On the left, Bode diagram of the loop gain in the two limiting
cases; on the right, the voltage-controlled current source considered with the
addition of the noise sources.

Now, we are asked to calculate the output noise power spectral density re-
lated to the noise equivalent voltage sources SV in the two identical operation
amplifiers. Since the output of this network is a current, we need to find the noise
equivalent current power spectral density. We can thus add the noise equiva-
lent voltage source for the operation amplifiers as in Figure 5.123. In this case,
dealing with them as if they were normal voltage sources, we can obtain:

V −2 = Vo + Vn2

from which:

V −1 =
Vo + Vn2

2
= V +

1

and therefore at the output of the second operation amplifier:

Vout,2 = 2

(
Vo + Vn2

2
− Vn1

)
= Vo + Vn2 − 2Vn1.

This gives the following output current:

Io =
Vn2 − 2Vn1

RS

and thus we can write the associated power spectral density, squaring the mod-
ulus of the transfer from the noise sources to the output current, as:

SIo =
|Vn2|2 + 4|Vn1|2

R2
S

=
SV + 4SV

R2
S

=
5SV
R2
S

.

Now, we are asked to compensate the second operation amplifier. Since from
the previous parts we have found that the loop gain of the second operation
amplifier can be written as:

Gloop,2 = −A(s)

(
1

1 + sτc
− RL
RL +RS

)
= −A(s)

RS
RS +RL

1− sτc RSRL
1 + sτc
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we can notice that the non-ideality of the first operation amplifier introduces
a non-minimum phase zero and a pole: both represent a problem from the
stability point of view. To compensate this network, then, different approaches
are possible.

− +
−

+

RS RL

Rc

Cc

RR

R

R

21

Figure 5.124: A first example of compensation.

For example, as in Figure 5.124, we can bypass the first operation amplifier
introducing a capacitor and a resistor. Alternatively, we can observe that the
problem of the zero is relevant when we have that:

RL � RS ⇒
RL

RS +RL
' 1

thus giving, in the high-frequency limit:

1

1 + sτc
− RL
RL +RS

−−−→
s→∞

1

sτc
− RL
RS +RL

' 0.

We can thus try to reduce the term RL/(RS + RL) and therefore to increase
the loop gain or, equivalently, pushing the zero to higher frequencies. To reduce
the load impedance in the high-frequency limit, we can thus add a capacitor in
parallel to it, as in Figure 5.125.

Studying this circuit, we can obtain that:

Gloop,2 = −A(s)

[
1

1 + sτc

RL(1− sCcRL)
RL

1+sCcRL
+RS

]
= −A(s)

[
1

s+ τc
− RL
RL +RS + sCcRLRS

]
=

= −A(s)

[
1

1 + sτc
− RL
RL +RS

· 1

1 + sCc(RL‖RS)

]
and defining:

k =
RL

RL +RS
we can obtain:

Gloop,2 = −A(s)

(
1

1 + sτc
− k

1 + sCcRSk

)
= −A(s)

1 + sCcRSk − k − sτck
(1 + sτc)(1 + sCcRSk)

=

= −A(s)
1− k + sk(CcRS − τc)
(1 + sτc)(1 + sCcRSk)

.
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− +
−

+

RS RL Cc

RR

R

R

21

Figure 5.125: Another example of compensation.

Observing that in this case the frequency of the zero is determined by CcRS−τc
we can move it to the left hand-side of the complex plane by a proper selection
of the compensation capacitance:

CcRS > τc.

The frequencies of the zeros and of the poles therefore will be:

fp1 =
1

2πτc
, fp2 =

1

2πCcRSk
, fz =

1− k
2πk(CcRS − τc)

.

In the following limiting case:

RL � RS → k ' 1 → fz < fp2

the zero will be placed on the left of the second pole, thus increasing the phase
margin. With a proper selection of the compensation capacitance, it is also
possible to cancel out the second pole. The drawback of this scheme is that we
are actually affecting the gain, since at high-frequencies the current will flow
through the capacitor Cc, changing the behaviour of the network.
Focusing now on the other limiting condition, in which:

RL � RS

we still have a stability issue: we need thus to increase the phase margin.
Considering the network represented in Figure 5.126, we know that without

the compensation capacitor that we have just introduced the loop gain of this
stage will be:

Gloop,1 = −A(s)

2

and it will limit the phase margin of Gloop,2. To increase this factor 1/2 in
the first loop gain, we can change the partition between the two resistances of
the network, making the feedback resistance smaller by putting something in
parallel to it. In this case, doing all the calculations, we are adding a zero and
a pole, obtaining that the loop gain of this stage will cross the zero decibel axis
again in the gain-bandwidth product. This means that, in Gloop,2, we are placing
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−

+

R

Cc

R

1

Figure 5.126: Compensation of a portion of the previous network.

an additional pole exactly in the gain-bandwidth product, where it crosses the
zero decibel axis, thus increasing the phase margin. This solution, however, in
the high-frequency limit will reduce the ideal gain.

Are we able to make again the transfer from the output of the second oper-
ation amplifier to the output of the loop of the first operation amplifier again
equal to one? To obtain this transfer, we can add another, identical capacitor
in parallel to the resistance R that is placed between the positive input pin of
the first operation amplifier and the output of the second operation amplifier,
as it is shown in Figure 5.127. This capacitor will preserve the symmetry of the
circuit and it will improve its performances24.

5.10.2 Exercise 2

Consider the network represented in Figure 5.128, where we have four differ-
ent gated integrators that work sequentially. First of all, we have to find the
weighting function of this filter and the associated Fourier transform. Since we
know that the weighting function of a gated integrator is a rectangle over the
integration time T , assuming some undetermined and randomly chosen weights
for each one of the various gates, we can obtain a weighting function that can
be represented as in Figure 5.129.

In the frequency domain, all these rectangles will give four shifted sinc func-
tions:

W (t, f) = w1T sinc(πfT )e−j2πf
T
2 + w2T sinc(πfT )e−j2πf

3T
2 +

+ w3T sinc(πfT )e−j2πf
5T
2 + w4T sinc(πfT )e−j2πf

7T
2 .

Now, we can consider the case of a constant input signal superimposed on a
white noise; we want to find the optimum value of the weights for this filter in
order to obtain the maximum signal-to-noise ratio. Since we know that the signal
is constant and that, in the case of white noise optimum filtering, the weighting
function must be proportional to the input signal, we can clearly choose:

w1 = w2 = w3 = w4.

24From the point of view of the solution of this exam, this last consideration was not
required.
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−

+
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R
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R

R

R

Cc
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Figure 5.127: A compensation scheme that will not reduce the ideal gain.

In this case, from the expression of the signal-to-noise ratio for a gated integra-
tor, observing that the filter that we have obtained in this case is nothing but
a gated integrator with a gate equivalent to 4T , we can write the associated
signal-to-noise ratio as:

S

N
=

A√
λ

√
4T

where λ is the power spectral density associated to the white noise.
Now, in addition to this input white noise we have also a constant or very low
frequency varying offset; also in this case we want to find the best filter for
the signal. To get rid of this offset and contemporarily to filter the white noise,
the only possibility is to place some of the gating windows before the arrival of
the signal and some of them after the arrival of the signal. Since we want the
offset to be subtracted from the signal, we can say that the gates before the
arrival time of the signal will have a negative amplitude, while the gates after
the arrival of the signal will have a positive one. In this case, depending on how
many gates we have before the arrival of the signal (either one, two or three)
we can change the weight of these gates and of the remaining one. Assuming to
have n negative gates before the arrival of the signal, then we will have 4 − n
positive gates, as it is represented in the right hand-side of Figure 5.129. In this
case, integrating the offset signal, since we want it to not give any contribution
at the output:

−VosnTwn + Vos(4− n)Twp = 0

we can obtain the following condition on the weights wn and wp associated,
respectively, to the negative and to the positive weights:

nwn = (4− n)wp.
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Figure 5.128: The network considered.

Figure 5.129: On the left, generic weighting function for this filter; on the right,
the four different possible weighting function for the case of a constant offset.

This requirement therefore will be needed for not having any output offset signal.
The signal-to-noise ratio, in this case, obviously considering at the output only
the white noise, will be written as:

S

N
=

A(4− n)Twp√
λw2

nnT + λ(4− n)Tw2
p

where we considered that the white noise, being uncorrelated in every integration
gate, will be always added. Substituting the condition for the absence of the
offset signal that we have previously obtained, this gives the following signal-
to-noise ratio:

S

N
=

A(4− n)T��wp√
λT
√

(4−n)2

n ��w
2
p + (4− n)��w

2
p

=
A(4− n)T

√
λT
√

(4−n)2

n + (4− n)
=

=
A√
λ
·
√

(4− n)T√
4−n
n + 1

=
A√
λ
·
√
n(4− n)T

4

and therefore maximizing the signal-to-noise ratio we obtain:

max
n=1,2,3

[n(4− n)] = 4 → n = 2 → S

N
=

A√
λ

√
T

where therefore we have that all the weights have the same modulus but different
sign:

wn = wp.
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Now, we can consider also the presence of a flicker noise term at the input:

SV =
K

f
.

We have thus to compute the signal-to-noise ratio knowing the value of the
following integral: ∫ +∞

0

sin4(x)

x3
dx ' 0.7.

As usual, the mean square value of the output noise will be:

n2
y =

∫
K

f
|W (t, f)|2 df

and computing the square modulus of the Fourier transform of the weighting
function:

|W (t, f)|2 =
∣∣2Tw sinc(2πfT )e−j2πfT − 2Tw sinc(2πfT )ej2πfT

∣∣2 =

= |2Tw sinc(2πfT ) · 2j sin(2πfT )|2 = 4w2 sin4(2πfT )

π2f2
.

Computing this integral, therefore:

n2
y =

∫ +∞

0

K

f
· 4w2 sin4(2πfT )

π2f2
df =

∫ +∞

0

32w2T 3Kπ
sin4(2πfT )

(2πfT )3
df =

= 16w2T 2K

∫ +∞

0

sin4(x)

x3
dx ' 16 · 0.7(wT )2K

from which we get25:
S

N
=

A√
16 · 0.7K

.

5.11 Another exam test

These exercises come from the exam of September 12th, 2014.

5.11.1 Exercise 1

It is given the circuit represented in Figure 5.130, where we have that:

A0 = 105, R1 = R3 = 10 kΩ, R2 = 100 kΩ

and where the poles of the operation amplifiers are placed in 10 Hz and 1 MHz.
Since this circuit is clearly symmetric, we can study it considering first a common
mode input (thus an input that is equal to the two input pins) and then a
differential mode input (that an input that is equal in modulus but different in
sign at the two pins). In the case of the common mode input:

Vi1 = Vi2 = Vc

25In this calculation, there is a wrong, constant numerical coefficient, but it is not so im-
portant.
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Figure 5.130: Circuit considered.

and observing that:

V +
1 = Vo1, V +

2 = Vo2

while, thanks to the negative feedback configuration of the third operation am-
plifier:

V −3 = 0

we can state that the current flowing through the two resistors R3 is identical,
thus giving:

Vo2 = −Vo1.

However, from the analysis of the circuit we can write:

Vo1 = Vc ·
R2

R1 +R2
+ V3 ·

R1

R1 +R2

while for the other output:

Vo2 = Vc ·
R2

R1 +R2
+ V3 ·

R1

R1 +R2

and thus, imposing the previous symmetry condition we obtain that:

Vo2 = −Vo1 ⇒ Vo1 = Vo2 = 0.

This means that the common mode output is equal to zero and, thus, we do not
have any common mode amplification.
In the case of a differential input, on the other hand:

Vi1 =
Vd
2
, Vi2 =

Vd
2

and thus we expect, again, from the fact that the third operation amplifier is in
a negative feedback configuration:

V3 = 0.

Also in this case, this means that:

Vo1 = −Vo2
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and from the circuit we can obtain that:

Vo1 = −Vo2 =
Vd
2

R2

R1 +R2
' Vd

2

where we have obtained that the ratio R2/(R1 +R2) can be approximated with
one from the given values for these resistors. The differential mode amplification
can thus be written as:

Ad =
Vo1 − Vo2

Vd
' 1.

Now, we need to compute all the three different loop gains that we can obtain
considering one of the operation amplifiers as a real one and the others as ideal
ones. We can immediately notice that, from the symmetry of the network, the
loop gain of the first operation amplifier will be completely identical to the one
of the second operation amplifier:

Gloop,1 = Gloop,2.

Starting from the third loop gain, we can cut the loop at the output of the third
operation amplifier (in a place where there is no need for impedance reconstruc-
tion) and we can set a voltage test signal VS between the two R2 resistors. In
this case, we can immediately write, through a voltage partition, the voltage at
the positive input pins of the two remaining ideal operation amplifiers:

V +
1 = V +

2 = VS
R1

R1 +R2

but since, from the negative feedback configuration, they will be to the related
output voltages:

Vo1 = Vo2 = V +
1 = V +

2 = VS
R1

R1 +R2

and this means that there is not any current flowing through the R3 resistors,
making also the voltage at the input of the third operation amplifier equal to
this value:

V −3 = Vo1 = Vo2 = VS
R1

R1 +R2
.

Therefore, the loop gain associated to the third operation amplifier can be writ-
ten as:

Gloop,3 = −A(s)
R1

R1 +R2
' A(s)

10
.

For the loop gain of the first operation amplifier, we can immediately notice
that:

V −1 = VS

and since the same current is again flowing through both the resistances indi-
cated with R3:

V −3 = 0 → V −2 = −VS → V +
2 = −VS

and in the same way, from the symmetry of the circuit:

V +
1 = −VS .
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Figure 5.131: Bode diagrams of the magnitude of Gloop,3 and Gloop,2 = Gloop,1
respectively.

This means that we have obtained:

Gloop,1 = −2A(s)

and the same must hold for the symmetric loop gain:

Gloop,2 = −2A(s).

From the fact that the gain of the operation amplifier is raised by a factor 2, the
phase margin is lower than 45◦, thus possibly giving some stability problems.

Figure 5.132: On the left, computation of the first loop gain Gloop,1; on the right,
a possible compensation scheme.

We need thus to find a possible way of compensating this scheme. This task
is particularly difficult due to the symmetry of the circuit: in fact, we need to
take into account that whatever modification we want to do on one side of the
circuit must be applied also to the other side. A first possibility is to add the
series between a capacitor Cc and a resistor Rc between the positive and the
negative input pin of the first and of the second operation amplifiers. In this
way, the symmetry of the circuit is preserved and, doing the calculations, it is
possible to show that we have actually added a pole and a zero at the following
frequencies:

fz =
1

2πCcRc
, fp =

1

2πCc(Rc +R1‖R2)
< fz.
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This solution is good also because when we are dealing with the loop gain of
the first operation amplifier, thus assuming the second operation amplifier as
an ideal one, since the two input pins of the second operation amplifier will be
kept at the same voltage because of the fact that we are dealing with a negative
feedback network the associated compensating elements will not come into play.
Another possibility, in this case, is to lower the loop gain associated to the first
and to the second operation amplifier until the second pole is placed exactly
at the crossover frequency or at an higher frequency. In general, this is not the
correct way of compensating a network but, in this case, we can adopt it since
it requires a reduction of the loop gain only of a factor two, that is affordable.
To reduce the loop gain of this quantity, we can place two additional resistors
at the output of the first and of the second operation amplifiers, obtaining
the network that is represented in Figure 5.132. In this way, we are actually
changing the configuration of the network involving the first or, equivalently,
the second operation amplifier from the one of a buffer stage (thus with unitary
gain) to the one of a non-inverting amplifier with a gain equal to two. Since the
gain-bandwidth product of the operation amplifier is constant, increasing the
gain we are thus reducing the bandwidth of the operation amplifier. A problem,
however, may arise. In fact, in this case, under a purely differential signal we
are obtaining a differential gain that is equal to two, thus being different from
the one we had in the previous, uncompensated network. Since this might be
an unwanted effect, to restore the unitary gain we have to impose the following
condition:

R1 = R2.

From the viewpoint of the noise, we now have to find the differential noise output
power spectral density for the case of a white noise voltage equivalent source
with power spectral density:

SV = 10 nV/
√

Hz

in each operation amplifier, thus neglecting all the noise contributions that are
coming from resistances and noise equivalent current sources. Considering the
original circuit, then, we can add a noise equivalent voltage source in series
to the positive input pin of each operation amplifier of the circuit and we can
ground the usual inputs. Considering now only the noise contribution the first
operation amplifier, we can obtain that since the third operation amplifier is in
a negative feedback configuration:

V −3 = 0 → V +
1 = Vo1

and therefore, defining V4 the only common node between the resistors R1 and
R2 in the upper part of the network, we have that:

V4 = Vo1 − Vn1

where Vn1 is the noise equivalent voltage source for the first operation amplifier.
However, from the symmetry of the circuit and from the inspection of the lower
part of the network, this implies that:

Vo2 = Vo1 − Vn1
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and therefore the differential output noise voltage will be Vn1. The same result
can be obtained considering a noise equivalent voltage source for the second
operation amplifier. Considering now the third operation amplifier, the noise
equivalent voltage source will give the fact that:

V −3 = Vn3

while from the rest of the network we have that:

V +
1 = Vo1 = V +

2 = Vo2.

In this case, therefore, the differential output noise voltage for the third opera-
tion amplifier will be identically equal to zero. This is consistent with the fact
that, in this last case, we are biasing the network in a symmetry point, there-
fore there will not be any way of breaking this symmetry obtaining a differential
output voltage different from zero.
In the last part of this exercise, we are now asked to discuss the common-mode
rejection ratio of this network. From an ideal point of view, we have already
seen that the common-mode amplification is equal to zero. However, we can
now assume to be in a real case and, therefore, all the resistors in the lower part
of the network could be slightly different from the ones in the upper part of
the network; we will thus rename all the resistors placed in the lower half with
a prime apex. Then, we have to take into account that a slight variation of in
resistors is possible:

R → R(1± x)

and we will always take into account the worst case. From the fact that the
third operation amplifier is a negative feedback configuration, we can say that:

V −3 = 0

and therefore, since the same current is flowing through R3 and R′3, we will
have:

Vo2 = −Vo1
R′3
R3

.

However, since also the other operation amplifier are in a negative feedback
configuration:

V +
1 = Vo1, V −2 = Vo2

and thus we get, defining V3 the output of the third operation amplifier and
considering a common-mode input voltage Vc:

Vo1 = Vc
R2

R1 +R2
+ V3

R1

R1 +R2

and:

Vo2 = Vc
R′2

R′1 +R′2
+ V3

R′1
R′1 +R′2

.

Solving the system that we have obtained with the previous four equations, we
obtain that:

V3 = Vo1

(
1 +

R2

R1

)
− Vc

R2

R1
= Vo2

(
1 +

R′2
R′1

)
− Vc

R′2
R′1

.
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Solving the second and the third member of this expression for the first output
voltage:

Vo1

(
1 +

R2

R1
+
R′3
R3

+
R′3
R3

R′2
R′1

)
= Vc

(
R2

R1
− R′2
R′1

)
.

We can immediately observe that the term between brackets in the left hand-
side of the equation contains only higher order terms and, therefore, it will not
be identically equal to zero in a first order approximation where we assume:

R′1 ' R1, R′2 ' R2, R′3 ' R3.

On the other hand, the term between brackets in the right hand-side of the
equation will vanish in this limiting case, therefore we have to keep all these
resistors slightly different one from the other. This therefore gives:

Vo1

(
1 +

R2

R1
+
R3

R3
+
R3

R3

R2

R1

)
= 2Vo1

(
1 +

R2

R1

)
' Vc

(
R2

R1
− R′2
R′1

)
and therefore, including the possibility of these resistors to vary, in the worst
case we will obtain:

2Vo1

(
1 +

R2

R1

)
= Vc

(
R2(1 + x)

R1(1− x)
− R2(1− x)

R1(1 + x)

)
= Vc

R2

R1
(1 + 2x− 1 + 2x) =

= Vc
R2

R1
4x

and, as it is expected, this result is proportional to x. Therefore, we obtain that:

Vo1
Vc

=
R2

R1
· 2x · 1

1 + R2

R1

=
2xR2

R1 +R2
' 2x

and the common-mode amplification factor is:

Ac =
Vo1+Vo2

2

Vc
.

From the expression of the second output voltage, however:

Vo2 = −R
′
3

R3
Vo1 = −Vo1(1± 2x)

and thus we get:
Vo1 + Vo2

2
= ±xVo1 = 2x2Vc

from which, at the end, we obtain:

Ac = 2x2.

We can immediately notice that this amplification factor is of the second order
with respect to x. This has two important consequences: the first one is that
the common-mode amplification factor is actually very low and the second one
is that this result is, actually, wrong. In fact, we have previously neglected all
the second order terms, therefore we must trust our result only as a first order
approximation, where it only says that the common-mode amplification factor
is lower than the first order, thus giving a common-mode rejection ratio that is
quite high.
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Figure 5.133: Network considered.

5.11.2 Exercise 2

It is given the network represented in Figure 5.133 that we want to use to mea-
sure a temperature variation between 0◦C and 100◦C. We know that the active
element of the Wheatstone bridge is characterized by the following coefficient:

TCR = 4 · 10−3 /◦C

while the bandwidth of the signal is 1 Hz and the output dynamics, equal to the
range between 0 and 5 V, is sampled with an 8-bit analog to digital converter
(ADC). The system is affected by a flicker noise with unilateral power spectral
density:

SV =
K

f
, K = 10−8 V2

and the reference signal can be written as:

R1, R2 : A cos(ωt+ ϕ), A = 1 V.

The first task is to set the correct parameters for this acquisition system in order
to obtain a signal-to-noise ratio equal to 10. From the theory on the Wheatstone
bridge, we know that the voltage that is coming to the instrumentation amplifier
will be:

Vin = VR1
x

4
=
Vcc
4
TCR ·∆T =

A

4
TCR ·∆T

and therefore the maximum possible input signal will be, for the maximum
temperature that is 100◦C:

Vin,max =
A

4
TCR ·∆Tmax = 100 mV.

From the dynamic of the analog to digital converter, since at the output of
the low-pass filter we are obtaining the continuous component of the square
of a sinusoidal waveform, that is constant and equal to the input amplitude
multiplied by 1/2, we can set the required gain of the instrumentation amplifier
to match the full dynamic of the converter:

G = 100.

The bandwidth of the low-pass filter, then, will be related to the one of the
signal and, to be in a safe condition, we can assume it to be a decade larger
than the one of the signal:

BWLPF = 10 ·BWs = 10 Hz.
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Last, we have to impose the requirement on the signal-to-noise ratio in order
to get the frequency of the reference signal, assuming that it does not have any
phase. From the theory of the lock-in amplifiers, we can write the associated
signal-to-noise ratio as:

S

N
=

Vmin√
2SV (fr)BWn

where the least significant bit of the converter gives the minimum signal that
we want to discriminate:

Vmin =
Vin,max

28
.

From the expression of the flicker noise at the reference frequency and from the
one of the noise bandwidth, that is related to the bandwidth of the filter:

SV (fr) =
K

fr
, BWn =

π

2
BWLPF

and imposing the requirement on the signal-to-noise ratio we obtain the follow-
ing frequency:

S

N
= 10 ⇒ fr ' 130 Hz.

Now, we have to consider a step change in the temperature from 0◦C to 20◦C
and study the behaviour of the signal. At the input of the instrumentation
amplifier, the signal can be written as:

Vin = VR1
x

4
= VR1TCR∆T

and therefore it is constant and equal to zero before the step, while it is oscillat-
ing with a sinusoidal behaviour of amplitude equal to 20 mV after it. Then, at
the output of the instrumentation amplifier, before the demodulation stage, it
will be identical to the previous signal, thus showing after the step an oscillating
behaviour with amplitude equal to 2 V (since the gain of this stage has been
set at G = 100). After the demodulation stage, where we are multiplying the
oscillating signal with a sinusoidal reference, we obtain a zero constant signal
before the arrival of the step, while after we have an oscillating behaviour corre-
sponding to the square of a sinusoidal function and whose average value is 1 V.
At the output of the low-pass filter, then, we are obtaining only this continuous
component of the oscillation, therefore the signal will be equal to zero before the
arrival of the step, while after it it will increase with an exponential behaviour
toward 1 V with a time constant that is determined by the time constant of
the low-pass filter. These signals are represented in Figure 5.134, where in the
signal at the output of the low-pass filter can be found also a residual, small-
amplitude oscillation at twice the frequency of the reference that is related to
this demodulation stage. The remaining part of the exercise is left to the willing
student.
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Figure 5.134: Signals in the various parts of the network: on the left we have the
signals at the output of the instrumentation amplifier and of the demodulation
stage; on the right, again the signal at the output of the demodulation stage
and the signal at the output of the low-pass filter.


	Course introduction
	Operation amplifier
	Equivalent circuits
	Voltage and current amplifiers
	Voltage amplifier
	Current amplifier
	Summary

	Negative feedback and applications
	Historical introduction
	Theoretical explanation
	Loop gain
	Sensitivity of the system

	Elementary linear stages and impedances
	The operation amplifier
	Non-inverting amplifier
	Voltage follower and buffer stage
	Inverting amplifier
	Current-voltage converter
	Voltage-current converter

	Non-linear stages
	Integrator
	Differentiator
	Impedance representation

	Real operation amplifiers: DC and AC parameters
	Absolute maximum ratings
	Operating conditions
	Electrical characteristics

	Instrumentation amplifiers, CMRR and PSRR
	Common and differential modes
	Common-mode rejection ratio
	Power supply rejection ratio

	Frequency response of OA circuits
	Typical performance characteristics
	Stability of the feedback loop
	Loop gain
	Open-loop gain
	Direct gain
	Input and output impedances

	Frequency behaviour, stability and compensation
	Frequency response of feedback amplifiers
	Stability of feedback amplifiers
	Compensation
	Capacitive load

	Amplifiers and signals
	Single-ended and differential signals
	Subtractor circuit
	Instrumentation amplifiers

	Single power supply operation amplifiers

	Sensors
	Signal readout from resistive sensors
	Resistive sensors
	Wheatstone bridge
	2-, 3- and 4-wire connections
	Temperature compensation

	Sensor generalities and parameters
	Sensitivity
	Linearity
	Resolution, precision and accuracy
	Dynamic parameters

	Deformation sensors
	Temperature sensors
	RTD
	Thermistors
	Sensor self-heating

	Thermoelectric effect and thermocouples
	Summary and comparison

	Noise
	Signal and noise in time and frequency domains
	Cross-correlation and autocorrelation
	Random processes
	White noise
	Thermal noise in resistors
	Nyquist derivation
	Brownian motion

	Shot noise and Poisson random process model
	Flicker noise
	Noise in linear circuits and OAs
	Noise factor, noise figure, signal-to-noise ratio
	Feedback and noise

	Signal recovery
	Introduction
	White noise
	Low-pass filter
	Time-variant filter

	Gated integrators and improvement of S/N
	Boxcar averagers and ratemeters
	Discrete-time filters
	Continuous- and discrete-time comparison
	Optimum filtering
	Low-frequency noise
	High-pass filters
	Effects on pulsed signals

	Baseline restorers
	AM and synchronous detection
	Lock-in amplifiers
	Analog LIAs
	Digital LIAs


	Exercises
	Laplace transform, linear circuits and Bode plots
	The Laplace transform and its properties
	A few elementary signals
	Elementary components
	RC network
	Lag network
	Sinusoidal signals and Bode plots

	Integrator and differentiator circuits
	The integrator
	The differentiator
	The phase shifter

	I/O impedances and gain calculations
	Choice of the test source
	Differential stage
	Buffer stage

	Multiple feedback loops
	High-pass amplifier
	Low-pass filter
	Current source

	Wheatstone bridge
	Wheatstone bridge and instrumentation amplifier
	Wheatstone bridge and operation amplifiers
	Strain gauge
	An exercise on multiple feedback loops
	Another exercise on multiple feedback loops

	Noise transfer and OAs
	Exercise 1
	Exercise 2
	Exercise 3

	Signal conditioning
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Optimum filtering
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Flicker noise and LIAs
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	A complete exam test
	Exercise 1
	Exercise 2

	Another exam test
	Exercise 1
	Exercise 2



